Bienvenu Baptiste, Todorova Mira, Neugebauer Jörg, Raabe Dierk, Mrovec Matous, Lysogorskiy Yury, Drautz Ralf
Max Planck Institute for Sustainable Materials, Max-Planck-Straße 1, 40237 Düsseldorf, Germany.
Interdisciplinary Centre for Advanced Materials Simulations, Ruhr Universität Bochum, 44780 Bochum, Germany.
NPJ Comput Mater. 2025;11(1):81. doi: 10.1038/s41524-025-01574-w. Epub 2025 Mar 26.
The combined structural and electronic complexity of iron oxides poses many challenges to atomistic modeling. To leverage limitations in terms of the accessible length and time scales, one requires a physically justified interatomic potential which is accurate to correctly account for the complexity of iron-oxygen systems. Such a potential is not yet available in the literature. In this work, we propose a machine-learning potential based on the Atomic Cluster Expansion for modeling the iron-oxygen system, which explicitly accounts for magnetism. We test the potential on a wide range of properties of iron and its oxides, and demonstrate its ability to describe the thermodynamics of systems spanning the whole range of oxygen content and including magnetic degrees of freedom.
氧化铁的结构和电子复杂性给原子尺度建模带来了诸多挑战。为了克服可及长度和时间尺度方面的限制,需要一个基于物理原理的原子间势,该势要足够精确,以便正确考虑铁 - 氧系统的复杂性。然而,目前文献中尚无这样的势。在这项工作中,我们提出了一种基于原子团簇展开的机器学习势,用于对铁 - 氧系统进行建模,该势明确考虑了磁性。我们在铁及其氧化物的广泛性质上测试了该势,并证明了它能够描述涵盖整个氧含量范围且包括磁自由度的系统的热力学性质。