Suppr超能文献

具有增强血管生成和成骨特性的三维打印掺锶β-磷酸三钙生物陶瓷三周期极小曲面支架

Three-dimensional-printed strontium-incorporated β-TCP bioceramic triply periodic minimal surface scaffolds with enhanced angiogenic and osteogenic properties.

作者信息

Shan Yanbo, Bai Yang, Zhao Lisheng, Zhou Qing, Yang Shuo, Wang Gang, Lei Ye, Lu Yuzheng, Wu Yanbin, Wei Yu, Peng Jiang, He Rujie, Wen Ning, Gu Bin

机构信息

Graduate School of the PLA General Hospital, Beijing 100853, China.

Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.

出版信息

Regen Biomater. 2025 Aug 12;12:rbaf080. doi: 10.1093/rb/rbaf080. eCollection 2025.

Abstract

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.44 MPa at 80% porosity) and facilitating cell recruitment and precision Sr-dosing to enhance bioactivity. assays revealed that the Sr-TCP scaffold dose-dependently stimulated osteogenic differentiation and mineralization in mouse osteoblastic cell line (MC3T3-E1) cells, while also significantly enhancing the angiogenic capacity in human umbilical vein endothelial cells (HUVECs). studies indicated that the scaffold demonstrated synergistic osteogenic and angiogenic effects in rat femoral condylar defects, leading to marked improvements in bone healing. Collectively, this study establishes a novel design paradigm combining biomimetic topology with optimized ionic doping, resolving key limitations of conventional grafts and advancing the development of safe, highly effective biomaterials for vascularized bone regeneration.

摘要

在临床实践中,重建骨缺损仍然是一项重大挑战,这迫切需要先进的人工移植物,以同时促进血管生成和成骨作用。为了解决在安全离子剂量下实现高孔隙率/强度与有效生物活性之间的关键权衡问题,我们使用基于数字光处理(DLP)的三维(3D)打印技术,将锶(Sr)掺入具有三重周期性最小表面(TPMS)结构的β-磷酸三钙(β-TCP)支架中。通过系统筛选Sr浓度(0-10摩尔%),我们确定10摩尔%为最佳浓度,利用仿生TPMS结构之间的协同作用,提供了出色的机械强度(孔隙率为80%时高达1.44兆帕),并促进细胞募集和精确的Sr给药以增强生物活性。实验表明,Sr-TCP支架剂量依赖性地刺激小鼠成骨细胞系(MC3T3-E1)细胞的成骨分化和矿化,同时也显著增强人脐静脉内皮细胞(HUVECs)的血管生成能力。体内研究表明,该支架在大鼠股骨髁缺损中表现出协同的成骨和血管生成作用,显著促进了骨愈合。总的来说,本研究建立了一种将仿生拓扑结构与优化离子掺杂相结合的新型设计范式,解决了传统移植物的关键局限性,推动了用于血管化骨再生的安全、高效生物材料的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61dc/12417083/c9fb3dc3f653/rbaf080f9.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验