Suppr超能文献

一种侵袭性黑色素瘤的风险预测工具。

A Risk Prediction Tool for Invasive Melanoma.

作者信息

Whiteman David C, Olsen Catherine M, Wang Huanwei, Law Matthew H, Neale Rachel E, Pandeya Nirmala

机构信息

Department of Population Health, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.

School of Public Health, University of Queensland, Queensland, Australia.

出版信息

JAMA Dermatol. 2025 Sep 10. doi: 10.1001/jamadermatol.2025.3028.

Abstract

IMPORTANCE

Increasingly, strategies to systematically detect melanomas invoke targeted approaches, whereby those at highest risk are prioritized for skin screening. Many tools exist to predict future melanoma risk, but most have limited accuracy and are potentially biased.

OBJECTIVES

To develop an improved melanoma risk prediction tool for invasive melanoma.

DESIGN, SETTING, AND PARTICIPANTS: This population-based prospective cohort study (the QSkin Study) in Queensland, Australia, involved 10 years of follow-up from the baseline survey in 2011 and included individuals aged between 40 to 69 years who were melanoma-free at baseline and completed a comprehensive risk factor survey at recruitment. The data analysis was conducted from October 2024 to April 2025.

EXPOSURES

Thirty-one candidate variables collected at baseline were identified a priori as potential predictors of future risk of invasive melanoma.

MAIN OUTCOMES AND MEASURES

Histologically confirmed invasive melanomas newly diagnosed from baseline through to December 31, 2021, captured by data linkage to the Queensland Cancer Register. Follow-up was censored on diagnosis of melanoma in situ or death. Cox proportional hazards models with forward and backward selection approaches were used to identify the best-fitting model.

RESULTS

Of 41 919 eligible participants, 55% were female, and the mean (SD) age at baseline was 55.4 (8.2) years. A total of 706 new invasive melanomas were identified during 401 356 person-years of follow-up. The best-fitting model retained 14 predictors (age, sex, ancestry, nevus density, freckling density, hair color, tanning ability, adult sunburns, family history, other cancer prior to baseline, previous skin cancer excisions, previous actinic keratoses, smoking status, and height) and 2 statistical terms (age squared, age-by-sex interaction), yielding an apparent discriminatory accuracy of 0.74 (95% CI, 0.73-0.76). The Youden index was optimized at a screening threshold selecting the top 40% of predicted risk, which captured 74% of cases (number needed to screen = 32).

CONCLUSIONS AND RELEVANCE

This cohort study has identified an improved tool that offers enhanced accuracy for predicting the future risk of invasive melanoma compared with existing tools.

摘要

重要性

越来越多的系统性检测黑色素瘤的策略采用靶向方法,即优先对风险最高的人群进行皮肤筛查。有许多工具可用于预测未来患黑色素瘤的风险,但大多数工具准确性有限且可能存在偏差。

目的

开发一种用于预测侵袭性黑色素瘤的改进风险预测工具。

设计、研究地点和参与者:这项基于人群的前瞻性队列研究(QSkin研究)在澳大利亚昆士兰州进行,从2011年的基线调查开始进行了10年的随访,纳入了年龄在40至69岁之间、基线时无黑色素瘤且在招募时完成了全面风险因素调查的个体。数据分析于2024年10月至2025年4月进行。

暴露因素

在基线时收集的31个候选变量被预先确定为未来侵袭性黑色素瘤风险的潜在预测因素。

主要结局和测量指标

通过与昆士兰癌症登记处的数据链接获取从基线到2021年12月31日新诊断的经组织学证实的侵袭性黑色素瘤。随访在原位黑色素瘤诊断或死亡时进行截尾。采用向前和向后选择方法的Cox比例风险模型来确定最佳拟合模型。

结果

在41919名符合条件的参与者中,55%为女性,基线时的平均(标准差)年龄为55.4(8.2)岁。在401356人年的随访期间,共发现706例新的侵袭性黑色素瘤。最佳拟合模型保留了14个预测因素(年龄、性别、血统、痣密度、雀斑密度、头发颜色、晒黑能力、成人晒伤、家族史、基线前的其他癌症、既往皮肤癌切除史、既往光化性角化病史、吸烟状况和身高)和2个统计项(年龄平方、年龄与性别的交互作用),其表观鉴别准确性为0.74(95%置信区间,0.73 - 0.76)。约登指数在选择预测风险最高的前40%的筛查阈值时达到最优,该阈值捕获了74%的病例(筛查所需人数 = 32)。

结论和意义

这项队列研究确定了一种改进的工具,与现有工具相比,该工具在预测侵袭性黑色素瘤未来风险方面具有更高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c28d/12423951/d4a756ca7e1a/jamadermatol-e253028-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验