Suppr超能文献

Carboxylesterases, importance for detoxification of organophosphorus anticholinesterases and trichothecenes.

作者信息

Fonnum F, Sterri S H, Aas P, Johnsen H

出版信息

Fundam Appl Toxicol. 1985 Dec;5(6 Pt 2):S29-38. doi: 10.1016/0272-0590(85)90112-5.

Abstract

Several different types of experiments, including the use of inhibitors, have shown that carboxylesterases are a major factor in the metabolism and therefore detoxification of organophosphorus compounds such as soman and trichothecene toxins. The development of a new assay method for the enzyme has allowed us to separate the carboxylesterases into two major groups. The carboxylesterases can, however, be further separated by gel filtration, affinity chromatography, isoelectric focusing, and chromatofocusing into several isoenzymes. Liver microsomal carboxylesterases can be separated into five or six isoenzymes whereas guinea-pig plasma contains two isoenzymes. The isoenzymes differ in molecular weights, isoelectric points, substrate specificities, and affinity for inhibitors. Intravenous administration of a carboxylesterase preparation lowered the toxicity of soman in young rats. Carboxylesterases from rat and guinea-pig plasma inhibited by soman could be reactivated by DAM, whereas enzymes from porcine liver were not reactivated. Only one of the isoenzymes from rat liver microsomal preparation was responsible for the metabolism of T-2 toxin to HT-2. The further metabolism of HT-2 was performed by esterases from rat liver cytoplasma. Long-term exposure of the bronchial muscle to low concentration of soman modulate the bronchial contraction.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验