Suppr超能文献

利用卷积神经网络对15个欧洲传粉蝇类家族进行分类和不确定性量化。

Utilizing CNNs for classification and uncertainty quantification for 15 families of European fly pollinators.

作者信息

Stark Thomas, Wurm Michael, Ştefan Valentin, Wolf Felicitas, Taubenböck Hannes, Knight Tiffany M

机构信息

German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Oberpfaffenhofen, Germany.

Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany.

出版信息

PLoS One. 2025 Sep 10;20(9):e0323984. doi: 10.1371/journal.pone.0323984. eCollection 2025.

Abstract

Pollination is essential for maintaining biodiversity and ensuring food security, and in Europe it is primarily mediated by four insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera). However, traditional monitoring methods are costly and time consuming. Although recent automation efforts have focused on butterflies and bees, flies, a diverse and ecologically important group of pollinators, have received comparatively little attention, likely due to the challenges posed by their subtle morphological differences. In this study, we investigate the application of Convolutional Neural Networks (CNNs) for classifying 15 European pollinating fly families and quantifying the associated classification uncertainty. In curating our dataset, we ensured that the images of Diptera captured diverse visual characteristics relevant for classification, including wing morphology and general body habitus. We evaluated the performance of three CNNs, ResNet18, MobileNetV3, and EfficientNetB4 and estimated the prediction confidence using Monte Carlo methods, combining test-time augmentation and dropout to approximate both aleatoric and epistemic uncertainty. We demonstrate the effectiveness of these models in accurately distinguishing fly families. We achieved an overall accuracy of up to 95.61%, with a mean relative increase in accuracy of 5.58% when comparing uncropped to cropped images. Furthermore, cropping images to the Diptera bounding boxes not only improved classification performance across all models but also increased mean prediction confidence by 8.56%, effectively reducing misclassifications among families. This approach represents a significant advance in automated pollinator monitoring and has promising implications for both scientific research and practical applications.

摘要

授粉对于维持生物多样性和确保粮食安全至关重要,在欧洲,授粉主要由四个昆虫目(鞘翅目、双翅目、膜翅目、鳞翅目)介导。然而,传统的监测方法成本高且耗时。尽管最近的自动化努力主要集中在蝴蝶和蜜蜂上,但苍蝇作为一类多样化且在生态上具有重要意义的传粉者,受到的关注相对较少,这可能是由于它们细微的形态差异带来了挑战。在本研究中,我们调查了卷积神经网络(CNN)在对15个欧洲传粉蝇科进行分类以及量化相关分类不确定性方面的应用。在整理我们的数据集时,我们确保双翅目昆虫的图像捕捉到了与分类相关的多样视觉特征,包括翅膀形态和整体身体习性。我们评估了三种CNN(ResNet18、MobileNetV3和EfficientNetB4)的性能,并使用蒙特卡洛方法估计预测置信度,结合测试时增强和随机失活来近似偶然不确定性和认知不确定性。我们证明了这些模型在准确区分蝇科方面的有效性。我们实现了高达95.61%的总体准确率,将未裁剪图像与裁剪图像进行比较时,准确率平均相对提高了5.58%。此外,将图像裁剪到双翅目的边界框不仅提高了所有模型的分类性能,还将平均预测置信度提高了8.56%,有效减少了科之间的错误分类。这种方法代表了自动传粉者监测方面的重大进展,对科学研究和实际应用都具有广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a9/12422425/17530ace3a13/pone.0323984.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验