Suppr超能文献

人工智能辅助结肠镜检查用于结直肠病变检测:一项关于诊断准确性和组织病理学一致性的病例对照研究

Artificial intelligence-assisted colonoscopy for colorectal lesion detection: a case-control study on diagnostic accuracy and histopathological agreement.

作者信息

Facanali Junior Marcio Roberto, Sousa Junior Afonso Henrique da Silva, Marques Carlos Frederico Sparapan, Safatle-Ribeiro Adriana Vaz

机构信息

Universidade de São Paulo, Faculty of Medicine, Department of Gastroenterology, Colonoscopy Division - São Paulo (SP), Brazil.

出版信息

Arq Bras Cir Dig. 2025 Sep 8;38:e1898. doi: 10.1590/0102-67202025000029e1898. eCollection 2025.

Abstract

BACKGROUND

Artificial intelligence (AI)-assisted colonoscopy has emerged as a tool to enhance adenoma detection rates (ADRs) and improve lesion characterization. However, its performance in real-world settings, especially in developing countries, remains uncertain.

AIMS

The aim of this study was to evaluate the impact of AI on ADRs and its concordance with histopathological diagnosis.

METHODS

A matched case-control study was conducted at a colorectal cancer (CRC) referral center, including 146 patients aged 45-75 years who underwent colonoscopy for CRC screening or surveillance. Patients were allocated into two groups: AI-assisted colonoscopy (n=74) and high-definition conventional colonoscopy (n=72). The primary outcome was ADR, and the secondary outcome was the agreement between AI-based lesion characterization and histopathology. Statistical analysis was performed with a significance level of p<0.05.

RESULTS

ADR was higher in the AI group (60%) than in the control group (50%), but this difference was not statistically significant (p>0.05). AI-assisted lesion characterization showed substantial agreement with histopathology (kappa=0.692). No significant difference was found in withdrawal time (29 min vs. 27 min; p>0.05), indicating that AI did not delay the procedure.

CONCLUSIONS

Although AI did not significantly increase ADR compared to conventional colonoscopy, it demonstrated strong histopathological concordance, supporting its reliability in lesion characterization. AI may reduce interobserver variability and optimize real-time decision-making, reinforcing its clinical utility in CRC screening.

摘要

背景

人工智能(AI)辅助结肠镜检查已成为提高腺瘤检出率(ADR)和改善病变特征描述的一种工具。然而,其在现实环境中的表现,尤其是在发展中国家,仍不确定。

目的

本研究旨在评估AI对ADR的影响及其与组织病理学诊断的一致性。

方法

在一家结直肠癌(CRC)转诊中心进行了一项配对病例对照研究,纳入146例年龄在45 - 75岁之间因CRC筛查或监测而行结肠镜检查的患者。患者被分为两组:AI辅助结肠镜检查组(n = 74)和高清传统结肠镜检查组(n = 72)。主要结局指标是ADR,次要结局指标是基于AI的病变特征描述与组织病理学之间的一致性。采用显著性水平p<0.05进行统计分析。

结果

AI组的ADR(60%)高于对照组(50%),但差异无统计学意义(p>0.05)。AI辅助的病变特征描述与组织病理学显示出高度一致性(kappa = 0.692)。退镜时间无显著差异(29分钟对27分钟;p>0.05),表明AI未延迟检查过程。

结论

尽管与传统结肠镜检查相比,AI并未显著提高ADR,但它显示出与组织病理学的高度一致性,支持其在病变特征描述方面的可靠性。AI可能会减少观察者间的变异性并优化实时决策,增强其在CRC筛查中的临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa5d/12418787/e092cae2fd3b/0102-6720-abcd-38-e1898-gf01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验