Suppr超能文献

计算机辅助检测在结肠镜检查中对用户背景知识和息肉特征的影响。

Impact of User's Background Knowledge and Polyp Characteristics in Colonoscopy with Computer-Aided Detection.

机构信息

Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea.

Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea.

出版信息

Gut Liver. 2024 Sep 15;18(5):857-866. doi: 10.5009/gnl240068. Epub 2024 Jul 26.

Abstract

BACKGROUND/AIMS: We investigated how interactions between humans and computer-aided detection (CADe) systems are influenced by the user's experience and polyp characteristics.

METHODS

We developed a CADe system using YOLOv4, trained on 16,996 polyp images from 1,914 patients and 1,800 synthesized sessile serrated lesion (SSL) images. The performance of polyp detection with CADe assistance was evaluated using a computerized test module. Eighteen participants were grouped by colonoscopy experience (nurses, fellows, and experts). The value added by CADe based on the histopathology and detection difficulty of polyps were analyzed.

RESULTS

The area under the curve for CADe was 0.87 (95% confidence interval [CI], 0.83 to 0.91). CADe assistance increased overall polyp detection accuracy from 69.7% to 77.7% (odds ratio [OR], 1.88; 95% CI, 1.69 to 2.09). However, accuracy decreased when CADe inaccurately detected a polyp (OR, 0.72; 95% CI, 0.58 to 0.87). The impact of CADe assistance was most and least prominent in the nurses (OR, 1.97; 95% CI, 1.71 to 2.27) and the experts (OR, 1.42; 95% CI, 1.15 to 1.74), respectively. Participants demonstrated better sensitivity with CADe assistance, achieving 81.7% for adenomas and 92.4% for easy-to-detect polyps, surpassing the standalone CADe performance of 79.7% and 89.8%, respectively. For SSLs and difficult-to-detect polyps, participants' sensitivities with CADe assistance (66.5% and 71.5%, respectively) were below those of standalone CADe (81.1% and 74.4%). Compared to the other two groups (56.1% and 61.7%), the expert group showed sensitivity closest to that of standalone CADe in detecting SSLs (79.7% vs 81.1%, respectively).

CONCLUSIONS

CADe assistance boosts polyp detection significantly, but its effectiveness depends on the user's experience, particularly for challenging lesions.

摘要

背景/目的:我们研究了人与计算机辅助检测 (CADe) 系统之间的相互作用如何受到用户经验和息肉特征的影响。

方法

我们使用 YOLOv4 开发了一个 CADe 系统,该系统基于 1914 名患者和 1800 个合成无蒂锯齿状病变 (SSL) 图像的 16996 个息肉图像进行训练。使用计算机测试模块评估 CADe 辅助下的息肉检测性能。根据结肠镜检查经验将 18 名参与者分为护士组、研究员组和专家组。分析了 CADe 基于息肉组织病理学和检测难度的附加值。

结果

CADe 的曲线下面积为 0.87(95%置信区间 [CI],0.83 至 0.91)。CADe 辅助将总体息肉检测准确率从 69.7%提高到 77.7%(优势比 [OR],1.88;95%CI,1.69 至 2.09)。然而,当 CADe 错误地检测到息肉时,准确率会下降(OR,0.72;95%CI,0.58 至 0.87)。CADe 辅助的影响在护士组(OR,1.97;95%CI,1.71 至 2.27)和专家组(OR,1.42;95%CI,1.15 至 1.74)中最为显著和最小。参与者使用 CADe 辅助时的敏感度更好,分别达到 81.7%的腺瘤和 92.4%的易检测息肉,超过了独立 CADe 的 79.7%和 89.8%。对于 SSL 和难以检测的息肉,参与者使用 CADe 辅助的敏感度(分别为 66.5%和 71.5%)低于独立 CADe(分别为 81.1%和 74.4%)。与其他两组(分别为 56.1%和 61.7%)相比,专家组在检测 SSL 时的敏感度与独立 CADe 最接近(分别为 79.7%对 81.1%)。

结论

CADe 辅助可显著提高息肉检测的准确性,但效果取决于用户的经验,特别是对于具有挑战性的病变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11a4/11391145/5b18d465845f/gnl-18-5-857-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验