Suppr超能文献

OncoPSM:一种在肿瘤学试验中使用分区生存模型进行成本效益分析的交互式工具。

OncoPSM: an interactive tool for cost-effectiveness analysis using partitioned survival models in oncology trial.

作者信息

Qiu Xulong, Chen Jidi, Wang Muting, Zheng Kaixin, Li Ruixiong

机构信息

Department of Cardiothoracic Surgery, Shantou Central Hospital, Shantou, China.

Medical College, Shantou University, Shantou, China.

出版信息

Front Pharmacol. 2025 Aug 26;16:1554405. doi: 10.3389/fphar.2025.1554405. eCollection 2025.

Abstract

INTRODUCTION

Cost-effectiveness analysis (CEA) serves as a critical tool to evaluate the economic sustainability of new treatments. However, many CEA tools are not specifically tailored to address the intricate cost composition resulting from the complex treatment regimens in oncology trials.

METHODS

We extracted data from Kaplan-Meier (KM) curves, reconstructed individual patient data (IPD) using an iterative KM algorithm, and fitted parametric survival functions to the IPD data. Based on these functions, we constructed Partitioned Survival Model (PSM), calculated the probability of each survival state per cycle, and combined these with utility values to compute the effect per cycle and the incremental effect for the experimental group. We employed a treatment-cycle-specific cost analysis, simulating cost uncertainty through gamma distribution. Using the PSM, we calculated the state-weighted cost, applied a discount rate, determined the incremental cost for the experimental group, and calculated the Incremental Cost-Effectiveness Ratio (ICER).

RESULTS

The OncoPSM application is available at http://sw2-primary1.xiyoucloud.pro:13471/oncoPSM/. Validation with real-world data from the CHOICE-01 trial showed that OncoPSM accurately reconstructed IPD from KM curve, with RMSE below 0.004 for all curves. Log-rank p-values for the experimental and control groups (PFS: <0.001; OS: 0.010) closely matched the original article (PFS: <0.001; OS: 0.010). Hazard Ratios (HR) from reconstructed IPD data (PFS: 0.504 [0.4-0.63], OS: 0.731 [0.57-0.93]) were consistent with the original paper (PFS: 0.49 [0.39-0.61], OS: 0.73 [0.57-0.93]). The Log-logistic model provided the optimal fit for both PFS and OS curves according to the Akaike Information Criterion (AIC). Extrapolating the survival to a 10-year horizon, we created the PSM, derived the average state probability per cycle, and calculated state-weighted costs. The incremental cost for the experimental group was ¥42,068, with incremental quality-adjusted life years (QALYs) of 0.35, resulting in an ICER of 121,402, significantly below the willing-to-pay (WTP) threshold of 268,200 RMB/QALY. Uncertainty analysis showed a 99.7% probability of the experimental group being cost-effective.

CONCLUSION

OncoPSM provides convenient treatment-cycle-based cost analysis, addressing the complexities of treatment costs in oncology research. By visualizing the entire CEA process, OncoPSM enables decision-makers to make informed decisions based on both statistical and intuitive assessments.

摘要

引言

成本效益分析(CEA)是评估新疗法经济可持续性的关键工具。然而,许多CEA工具并非专门为解决肿瘤学试验复杂治疗方案所导致的复杂成本构成而设计。

方法

我们从卡普兰-迈耶(KM)曲线中提取数据,使用迭代KM算法重建个体患者数据(IPD),并将参数生存函数拟合到IPD数据。基于这些函数,我们构建了分区生存模型(PSM),计算每个周期每种生存状态的概率,并将这些概率与效用值相结合,以计算每个周期的效果和实验组的增量效果。我们采用了特定治疗周期的成本分析,通过伽马分布模拟成本不确定性。使用PSM,我们计算了状态加权成本,应用了贴现率,确定了实验组的增量成本,并计算了增量成本效益比(ICER)。

结果

OncoPSM应用程序可在http://sw2-primary1.xiyoucloud.pro:13471/oncoPSM/获取。使用CHOICE-01试验的真实世界数据进行验证表明,OncoPSM能准确地从KM曲线重建IPD,所有曲线的均方根误差(RMSE)均低于0.004。实验组和对照组的对数秩p值(无进展生存期:<0.001;总生存期:0.010)与原文(无进展生存期:<0.001;总生存期:0.010)密切匹配。从重建的IPD数据得出的风险比(HR)(无进展生存期:0.504[0.4 - 0.63],总生存期:0.731[0.57 - 0.93])与原文(无进展生存期:0.49[0.39 - 0.61],总生存期:0.73[0.57 - 0.93])一致。根据赤池信息准则(AIC),对数逻辑模型对无进展生存期和总生存期曲线均提供了最佳拟合。将生存期外推至10年,我们创建了PSM,得出每个周期的平均状态概率,并计算了状态加权成本。实验组的增量成本为42,068元,增量质量调整生命年(QALY)为0.35,导致ICER为121,402,显著低于每QALY 268,200元的支付意愿(WTP)阈值。不确定性分析表明,实验组具有成本效益的概率为99.7%。

结论

OncoPSM提供了基于治疗周期的便捷成本分析,解决了肿瘤学研究中治疗成本的复杂性。通过可视化整个CEA过程,OncoPSM使决策者能够基于统计和直观评估做出明智决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3509/12417180/c7cb9ad10a69/fphar-16-1554405-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验