Suppr超能文献

肽混合物测序、网络分析及二维串联质谱的框架

Framework for sequencing of peptide mixtures network analysis and two-dimensional tandem mass spectrometry.

作者信息

Le MyPhuong T, Zhu Yu, Dziekonski Eric T, Holden Dylan T, Gleich David F, Cooks R Graham

机构信息

Department of Chemistry, Purdue University West Lafayette IN 47907 USA

Department of Computer Science, Purdue University West Lafayette IN 47907 USA.

出版信息

Chem Sci. 2025 Sep 4. doi: 10.1039/d5sc03762j.

Abstract

Two-dimensional tandem mass spectrometry (2D MS/MS) provides in-depth biopolymer structural information previously not directly accessible with traditional one-dimensional MS/MS workflows, and in significantly less time (<1 second per sample). In this study, we enhance 2D MS/MS data analysis for greater applicability in omics workflows and address challenges in sequencing peptides in mixtures. We designed a graph-theory-based framework to efficiently manage, visualize, and maximize the structural information extractable from 2D MS/MS spectra. Graph analysis algorithms, including a PageRank-based method, are shown to deconvolve MS/MS signals and group together product ions from the same presursor peptide, enabling the reconstruction of peptide fragmentation trees. From this, MS information can be extracted to improve sequencing accuracy relative to current MS/MS methods. We also introduce a computationally efficient sequencing approach that leverages this structural information to reduce reliance on databases and sample separation, while also enabling the rapid sequencing of post-translationally modified peptides. Tests on simulated 2D MS/MS spectra, designed to mimic those from proteomic samples, achieved high precision in signal assignment. Proof-of-concept studies were conducted on real data from simple mixtures of short chain peptides, showing the potential applicability of combining network analysis with sequencing to analyze unknown peptide mixtures. We anticipate that this technique will complement proteomics workflows and facilitate direct biopolymer structural analysis.

摘要

二维串联质谱(2D MS/MS)提供了深入的生物聚合物结构信息,这是传统一维MS/MS工作流程以前无法直接获取的,而且所需时间显著缩短(每个样品<1秒)。在本研究中,我们改进了二维串联质谱数据分析,以使其在组学工作流程中具有更大的适用性,并解决混合肽测序中的挑战。我们设计了一个基于图论的框架,以有效地管理、可视化并最大化从二维串联质谱光谱中可提取的结构信息。包括基于PageRank的方法在内的图分析算法,被证明可以对串联质谱信号进行去卷积,并将来自同一前体肽的产物离子归为一组,从而能够重建肽段裂解树。由此,可以提取质谱信息,以相对于当前的串联质谱方法提高测序准确性。我们还引入了一种计算效率高的测序方法,该方法利用此结构信息来减少对数据库和样品分离的依赖,同时还能对翻译后修饰的肽段进行快速测序。对模拟的二维串联质谱光谱(旨在模拟蛋白质组学样品的光谱)进行的测试,在信号分配方面实现了高精度。对短链肽简单混合物的真实数据进行了概念验证研究,结果表明将网络分析与测序相结合来分析未知肽混合物具有潜在的适用性。我们预计这项技术将补充蛋白质组学工作流程,并促进直接的生物聚合物结构分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/724c/12418246/413a691d1d61/d5sc03762j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验