Suppr超能文献

基于光纤忆阻器的多模态睡眠监测物理储层计算

Fiber Memristor-Based Physical Reservoir Computing for Multimodal Sleep Monitoring.

作者信息

Zhang Jinhao, Zhu Zhenqian, Meng Jialin, Wang Tianyu

机构信息

School of Integrated Circuits, Shandong University, Jinan 250100, China.

Suzhou Research Institute of Shandong University, Suzhou 215123, China.

出版信息

Research (Wash D C). 2025 Sep 9;8:0870. doi: 10.34133/research.0870. eCollection 2025.

Abstract

Real-time wearable sleep monitors process diverse biological signals while operating under tight energy and computation budgets. The existing algorithms are facing problems of high energy consumption due to separate hardware storage and computation units. In this work, textile-integrated in-memory neuromorphic computing electronics based on MoS quantum dot fiber memristors was proposed for physical reservoir computing for the first time. Textile electronics convert raw electroencephalogram (EEG)and snoring audio directly into rich, high-dimensional state vectors based on intrinsic nonlinear dynamics. Leveraging 16 pulse-programmable conductance levels, the reservoir realizes an accuracy of 94.8%, 95.4%, and 93.5% in snoring events, sleep stages, and multimodal fusion, respectively. To enhance the robustness of feature extraction and improve classification performance under noisy conditions, the linear readout layer was replaced with a lightweight convolutional neural network. The hybrid neural network is 6 times faster than traditional deep-learning methods in 24-h segment EEG analysis. The memristors switch at ±1 V and sub-nanoampere currents, providing picowatt energy consumption suited to continuous on-body use. The results establish fiber memristor reservoir computing as an energy-efficient path to in-fabric, multimodal intelligence for next-generation home sleep analysis and wearable health care.

摘要

实时可穿戴睡眠监测器在严格的能量和计算预算下运行时,可处理多种生物信号。由于硬件存储和计算单元分离,现有算法面临高能耗问题。在这项工作中,首次提出了基于二硫化钼量子点纤维忆阻器的纺织集成内存神经形态计算电子器件用于物理储能计算。纺织电子器件基于内在非线性动力学将原始脑电图(EEG)和打鼾音频直接转换为丰富的高维状态向量。利用16个脉冲可编程电导水平,该储能器在打鼾事件、睡眠阶段和多模态融合中的准确率分别达到94.8%、95.4%和93.5%。为了增强特征提取的鲁棒性并提高噪声条件下的分类性能,将线性读出层替换为轻量级卷积神经网络。在24小时段脑电图分析中,混合神经网络比传统深度学习方法快6倍。忆阻器在±1V和亚纳安电流下切换,提供适合持续身体使用的皮瓦能耗。这些结果确立了纤维忆阻器储能计算作为实现下一代家庭睡眠分析和可穿戴医疗保健的织物内多模态智能的节能途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74ce/12417633/20c16ee062a2/research.0870.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验