Suppr超能文献

由电凝胶化可回收生物大分子水凝胶电解质实现的实用、可持续、宽温度适应性锌金属电池。

Practical, sustainable, wide-temperature-adaptable zinc-metal batteries enabled by electrogelated recyclable biomacromolecular hydrogel electrolytes.

作者信息

Huang Jing, Wang Sijun, Yu Le, Lizundia Erlantz, Zeng Xuanyu, Chen Lu, Lu Ziyang, Qi Luhe, Lin Yu, Deng Hongbing, Chen Chaoji

机构信息

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.

Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain.

出版信息

Natl Sci Rev. 2025 Jul 31;12(9):nwaf308. doi: 10.1093/nsr/nwaf308. eCollection 2025 Sep.

Abstract

In the promotion of aqueous zinc (Zn)-metal batteries, hydrogel electrolytes have been found to come with the capability to physically obstruct dendritic Zn growth and suppress unwanted side reactions compared to their liquid counterparts. However, due to the opposite structural requirements for ionic conductivity and mechanical strength, the preparation of thin-film hydrogel electrolytes for energy-dense Zn-metal batteries remains a formidable task. Herein, electrogelation that offers several unique advantages, including precise control over the thickness, good geometric adaptability, and high tunability of the hydrogels' microstructures and properties, is investigated as a promising technique to address the above-mentioned dilemma. It is shown that, by varying the electrogelation parameters, various biomacromolecular hydrogel electrolytes featuring highly micro-/nanostructured pores can be obtained to deliver simultaneously high mechanical strength (2.0 to 4.4 MPa) and high ionic conductivity (10.1 to 19.5 mS cm). Such -built electrolytes can be as thin as 50 μm and enable excellent Zn plating/stripping reversibility at 1 mA cm/1 mAh cm with Coulombic efficiency averaging 99.83% for over 2800 cycles (>6 months); the Zn-metal battery with a high areal capacity of 5.4 mAh cm and a practical negative-to-positive capacity ratio of 1.1 retains 70% of its initial capacity after 120 cycles. We quantitatively show the respectable recyclability, low environmental impact, and cost-effectiveness of our biomacromolecular hydrogel electrolytes by integrating experimental study, life-cycle assessment, and techno-economic analysis, thereby opening the door for research on more sustainable Zn-metal batteries and beyond.

摘要

在水性锌金属电池的推广中,人们发现与液体电解质相比,水凝胶电解质具有物理阻碍锌枝晶生长和抑制不必要副反应的能力。然而,由于离子传导性和机械强度的结构要求相反,制备用于能量密集型锌金属电池的薄膜水凝胶电解质仍然是一项艰巨的任务。在此,电凝胶化作为一种有前景的技术被研究,以解决上述困境,它具有几个独特的优点,包括对厚度的精确控制、良好的几何适应性以及水凝胶微观结构和性能的高度可调性。结果表明,通过改变电凝胶化参数,可以获得具有高度微/纳米结构孔隙的各种生物大分子水凝胶电解质,同时具有高机械强度(2.0至4.4兆帕)和高离子传导率(10.1至19.5毫西门子/厘米)。这种制备的电解质可以薄至50微米,在1毫安/平方厘米/1毫安时/平方厘米的电流密度下实现优异的锌电镀/剥离可逆性,在超过2800次循环(>6个月)中库仑效率平均为99.83%;具有5.4毫安时/平方厘米的高面积容量和1.1的实际负正容量比的锌金属电池在120次循环后保留其初始容量的70%。通过整合实验研究、生命周期评估和技术经济分析,我们定量地展示了我们的生物大分子水凝胶电解质可观的可回收性、低环境影响和成本效益,从而为研究更可持续的锌金属电池及其他电池打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9258/12418938/0bf9049acaf7/nwaf308fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验