Saighi Paul, Rozenberg Marcelo
Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, Orsay, France.
CNRS, Integrative Neuroscience and Cognition Center, Université Paris-Cité, Paris, France.
Front Comput Neurosci. 2025 Aug 26;19:1655701. doi: 10.3389/fncom.2025.1655701. eCollection 2025.
The brain's faculty to assimilate and retain information, continually updating its memory while limiting the loss of valuable past knowledge, remains largely a mystery. We address this challenge related to continuous learning in the context of associative memory networks, where the sequential storage of correlated patterns typically requires non-local learning rules or external memory systems. Our work demonstrates how incorporating biologically inspired inhibitory plasticity enables networks to autonomously explore their attractor landscape. The algorithm presented here allows for the autonomous retrieval of stored patterns, enabling the progressive incorporation of correlated memories. This mechanism is reminiscent of memory consolidation during sleep-like states in the mammalian central nervous system. The resulting framework provides insights into how neural circuits might maintain memories through purely local interactions and takes a step forward toward a more biologically plausible mechanism for memory rehearsal and continuous learning.
大脑吸收和保留信息、不断更新记忆同时限制宝贵的过往知识丢失的能力,在很大程度上仍是个谜。我们在关联记忆网络的背景下应对与持续学习相关的这一挑战,在这种网络中,相关模式的顺序存储通常需要非局部学习规则或外部记忆系统。我们的工作展示了纳入受生物启发的抑制性可塑性如何使网络能够自主探索其吸引子景观。这里提出的算法允许自主检索存储的模式,从而能够逐步纳入相关记忆。这种机制让人联想到哺乳动物中枢神经系统在类似睡眠状态下的记忆巩固。由此产生的框架为神经回路如何通过纯粹的局部相互作用来维持记忆提供了见解,并朝着一种更符合生物学原理的记忆排练和持续学习机制迈进了一步。