Ferrari Lorenzo, Cox Martijn, Obrist Dominik
ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
Xeltis BV, Eindhoven, Netherlands.
Front Bioeng Biotechnol. 2025 Aug 26;13:1629362. doi: 10.3389/fbioe.2025.1629362. eCollection 2025.
Tissue Engineering (TE) uses resorbable polymers to promote cellular growth, transforming the implant into a living valve. This study characterizes the three-dimensional flow field around TE valved conduits of varying sizes using a pulse duplicator with tomo-PIV imaging.
Three Xeltis Pulmonary Valve (XPV) conduits (16, 18, and 20 mm) were tested under pulmonary conditions at a cardiac output of 5 L/min. Flow velocities, trans-valvular pressure gradients (), effective orifice areas , mean and turbulent kinetic energies ( and ), and viscous shear stresses were measured proximal and distal to the valves.
Peak bulk velocity was 0.5, 0.4, and 0.3 m/s, with local peak velocities reaching 2.3, 1.9, and 1.4 m/s upstream and 3.6, 3.1, and 2.5 m/s in the jet downstream of XPV16, XPV18, and XPV20, respectively. Respective were 1.02, 1.25, and 1.57 cm. The flow field proximal to the valve conduits did not show any significant perturbations and was one order of magnitude lower than . As the flow passed the valve, increased by 152%, 175%, and 218% for XPV16, XPV18, and XPV20, respectively, while increased by 62%, 138%, and 161%. The respective probability of encountering elevated shear stresses (>10Pa) was 6%, 2%, and less than 1%.
This work provides the first experimental assessment of the XPV valve, along with an exploration of how valve size affects its hemodynamic performance. Results confirm that for a given hemodynamic condition, larger valves exhibit better performance showing lower flow velocities, , kinetic energies, and stresses, along with higher .
组织工程学(TE)使用可吸收聚合物来促进细胞生长,将植入物转化为活体瓣膜。本研究使用带有断层粒子图像测速(tomo-PIV)成像的脉动复制器,对不同尺寸的组织工程带瓣管道周围的三维流场进行了表征。
在肺循环条件下,以5升/分钟的心输出量对三个Xeltis肺动脉瓣(XPV)管道(16毫米、18毫米和20毫米)进行测试。测量了瓣膜近端和远端的流速、跨瓣压力梯度()、有效瓣口面积()、平均动能和湍流动能(和)以及粘性剪切应力。
最大总体流速分别为0.5米/秒、0.4米/秒和0.3米/秒,局部峰值流速在XPV16、XPV18和XPV20的上游分别达到2.3米/秒、1.9米/秒和1.4米/秒,在射流下游分别达到3.6米/秒、3.1米/秒和2.5米/秒。相应的有效瓣口面积分别为1.02平方厘米、1.25平方厘米和1.57平方厘米。瓣膜管道近端的流场未显示任何明显扰动,且比低一个数量级。当血流通过瓣膜时,XPV16、XPV18和XPV20的分别增加了152%、175%和218%,而分别增加了62%、138%和161%。遇到高剪切应力(>10帕)的相应概率分别为6%、2%和小于1%。
本研究首次对XPV瓣膜进行了实验评估,并探讨了瓣膜尺寸如何影响其血流动力学性能。结果证实,在给定的血流动力学条件下,较大的瓣膜表现出更好的性能,表现为流速、、动能和应力较低,以及较高的。