Xia Renjie, Liang Juan, Ma Jianguo, Du Xiaoyu, Ma Liangbin, Han Xiongxiong, Wang Yong, Qin Jianwei, Yan Long
Department of Medicine, Northwest Minzu University, Lanzhou, China.
Department of Hepatobiliary Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
Front Oncol. 2025 Aug 26;15:1618903. doi: 10.3389/fonc.2025.1618903. eCollection 2025.
Immune checkpoint blockade (ICB), particularly targeting programmed cell death-1 (PD-1), has revolutionized cancer immunotherapy but remains limited by heterogeneous therapeutic responses and immune-related toxicities. This review systematically examines the integration of immune agonists-STING, TLR, CD40, and OX40 agonists-with PD-1 inhibitors to overcome resistance and amplify antitumor immunity. Nanoparticle delivery systems emerge as transformative platforms, addressing critical limitations of free agonists, including enzymatic degradation, off-target toxicity, and poor pharmacokinetics. By leveraging tunable physicochemical properties (e.g., size, surface charge, stimuli-responsive release), nanoparticles enhance tumor-specific accumulation, prolong agonist half-life, and synergize with PD-1 inhibitors to remodel immunosuppressive microenvironments. Preclinical and early clinical studies demonstrate combinatorial strategies achieving increases in T cell infiltration and enhancements in anti-angiogenic activity compared to monotherapies. However, translational challenges persist, including nanoparticle-induced immunotoxicity (ROS-mediated inflammation), manufacturing scalability hurdles, and interspecies discrepancies in murine models. Future directions emphasize personalized nanovaccines, supramolecular cytosolic delivery systems (e.g., Calix-STING), and biomarker-driven trials to optimize efficacy in advanced pancreatic, melanoma, and immunologically quiescent tumors. This work underscores the imperative for interdisciplinary collaboration to standardize nanoparticle design and clinical validation frameworks, ultimately bridging the gap between nanomedicine innovation and oncology practice.
免疫检查点阻断(ICB),尤其是针对程序性细胞死亡蛋白1(PD-1)的阻断,已经彻底改变了癌症免疫疗法,但仍受限于异质性治疗反应和免疫相关毒性。本综述系统地研究了免疫激动剂——干扰素基因刺激蛋白(STING)、Toll样受体(TLR)、CD40和OX40激动剂——与PD-1抑制剂的联合使用,以克服耐药性并增强抗肿瘤免疫力。纳米颗粒递送系统成为变革性平台,解决了游离激动剂的关键局限性,包括酶降解、脱靶毒性和药代动力学不佳等问题。通过利用可调节的物理化学性质(如尺寸、表面电荷、刺激响应释放),纳米颗粒增强了肿瘤特异性蓄积、延长了激动剂半衰期,并与PD-1抑制剂协同作用以重塑免疫抑制微环境。临床前和早期临床研究表明,与单一疗法相比,联合策略可使T细胞浸润增加,并增强抗血管生成活性。然而,转化挑战依然存在,包括纳米颗粒诱导的免疫毒性(活性氧介导的炎症)、生产规模扩大的障碍以及小鼠模型中的种间差异。未来的方向强调个性化纳米疫苗、超分子胞质递送系统(如杯芳烃-STING)以及生物标志物驱动的试验,以优化在晚期胰腺癌、黑色素瘤和免疫静止肿瘤中的疗效。这项工作强调了跨学科合作的必要性,以规范纳米颗粒设计和临床验证框架,最终弥合纳米医学创新与肿瘤学实践之间的差距。