Ben Amar Nozha, Saidi Kamel, Hernández-Álvarez Christian, Dammak Mohamed, Martín Inocencio R
Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Département de Physique, Université de Sfax, BP 1171 Sfax, Tunisia.
Department of Physics, Sfax Preparatory Engineering Institute, University of Sfax, 1172-3000 Sfax. Tunisia.
ACS Appl Nano Mater. 2025 Aug 22;8(35):17133-17143. doi: 10.1021/acsanm.5c02804. eCollection 2025 Sep 5.
Noncontact optical nanothermometers are increasingly recognized for their high temperature resolution (δT), excellent relative thermal sensitivity (S > 1% K), rapid response times (t < 0.1 s), and robust long-term optical stability. In this study, upconversion nanoparticles (UCNPs) based on YMoO nanophosphors, codoped with 2% Er, 1% Tm, and x% Yb (x = 5, 10, 15 and 20%), were synthesized using the sol-gel method. The crystal structure, morphology, luminescence mechanisms, and temperature-sensing capabilities of these nanoparticles were systematically characterized. Under 975 nm laser excitation, the UCNPs exhibited intense upconversion luminescence, with emission peaks corresponding to well-defined energy-level transitions of Er and Tm ions. Temperature-dependent luminescence spectra were measured over the 300-520 K range using the fluorescence intensity ratio technique. The material exhibits both thermally coupled levels (TCLs) and nonthermally coupled levels, resulting from intraionic and interionic transitions involving Er-Er, Tm-Tm, Er-Tm, and Tm-Er interactions. This complex energy-transfer network significantly enhances the temperature-sensing performance. Among the investigated transitions, the intensity ratio I/I derived from the TCL approach showed the highest relative sensitivity, reaching S = 2.18% K at 300 K. Additionally, the system achieved a minimum temperature uncertainty of δT = 0.26 K. These findings highlight the superior thermometric performance of the synthesized nanophosphors and underscore their potential for optimization through the synergistic interplay of multiple luminescent centers. This work validates the applicability of these nanomaterials for advanced optical nanothermometry and provides a foundation for developing next-generation temperature nanosensors.
非接触式光学纳米温度计因其高温分辨率(δT)高、相对热灵敏度优异(S>1%K)、响应时间快(t<0.1s)以及长期光学稳定性强而日益受到认可。在本研究中,采用溶胶 - 凝胶法合成了基于YMoO纳米磷光体的上转换纳米粒子(UCNPs),共掺杂2%的Er、1%的Tm和x%的Yb(x = 5、10、15和20%)。对这些纳米粒子的晶体结构、形态、发光机制和温度传感能力进行了系统表征。在975nm激光激发下,UCNPs表现出强烈的上转换发光,发射峰对应于Er和Tm离子明确的能级跃迁。使用荧光强度比技术在300 - 520K范围内测量了温度相关的发光光谱。该材料同时呈现热耦合能级(TCLs)和非热耦合能级,这是由涉及Er - Er、Tm - Tm、Er - Tm和Tm - Er相互作用的离子内和离子间跃迁导致的。这种复杂的能量转移网络显著提高了温度传感性能。在所研究的跃迁中,从TCL方法得到的强度比I/I显示出最高的相对灵敏度,在300K时达到S = 2.18%K。此外,该系统实现了最小温度不确定度δT = 0.26K。这些发现突出了合成纳米磷光体卓越的测温性能,并强调了通过多个发光中心的协同相互作用进行优化的潜力。这项工作验证了这些纳米材料在先进光学纳米测温中的适用性,并为开发下一代温度纳米传感器提供了基础。