Suppr超能文献

可学习的边缘检测器可以使深度卷积神经网络更加强健。

Learnable edge detectors can make deep convolutional neural networks more robust.

作者信息

Ding Jin, Zhao Jie-Chao, Sun Yong-Zhi, Tan Ping, Wang Jia-Wei, Ma Ji-En, Fang You-Tong

机构信息

School of Automation and Electrical Engineering & Key Institute of Robotics of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China.

State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China.

出版信息

PLoS One. 2025 Sep 11;20(9):e0330299. doi: 10.1371/journal.pone.0330299. eCollection 2025.

Abstract

Deep convolutional neural networks (DCNNs) are vulnerable to examples with small perturbations. Improving DCNNs' robustness is of great significance to the safety-critical applications, such as autonomous driving and industry automation. Inspired by the principal way that human eyes recognize objects, i.e., largely relying on the shape features, this paper first designs four learnable edge detectors as layer kernels and proposes a binary edge feature branch (BEFB) to learn the binary edge features, which can be easily integrated into any popular backbone. The four edge detectors can learn the horizontal, vertical, positive diagonal, and negative diagonal edge features, respectively, and the branch is stacked by multiple Sobel layers (using learnable edge detectors as kernels) and one threshold layer. The binary edge features learned by the branch, concatenated with the texture features learned by the backbone, are fed into the fully connected layers for classification. We integrate the proposed branch into VGG16 and ResNet34, respectively, and conduct experiments on multiple datasets. Experimental results demonstrate the BEFB is lightweight and has no side effects on training. And the accuracy of the BEFB-integrated models is better than the original ones when facing white-box attacks and black-box attack. Besides, BEFB-integrated models equipped with the robustness enhancement techniques can achieve better classification accuracy compared to the original models. The work in this paper for the first time shows it is feasible to enhance the robustness of DCNNs through combining both shape-like features and texture features.

摘要

深度卷积神经网络(DCNNs)容易受到微小扰动样本的影响。提高DCNNs的鲁棒性对于自动驾驶和工业自动化等安全关键型应用具有重要意义。受人类眼睛识别物体的主要方式(即很大程度上依赖形状特征)的启发,本文首先设计了四个可学习的边缘检测器作为层内核,并提出了一个二进制边缘特征分支(BEFB)来学习二进制边缘特征,该分支可以轻松集成到任何流行的主干网络中。这四个边缘检测器可以分别学习水平、垂直、正对角线和负对角线边缘特征,并且该分支由多个Sobel层(使用可学习的边缘检测器作为内核)和一个阈值层堆叠而成。该分支学习到的二进制边缘特征与主干网络学习到的纹理特征连接后,被送入全连接层进行分类。我们分别将提出的分支集成到VGG16和ResNet34中,并在多个数据集上进行实验。实验结果表明,BEFB轻量级且对训练没有副作用。并且在面对白盒攻击和黑盒攻击时,集成了BEFB的模型的准确率优于原始模型。此外,配备了鲁棒性增强技术的集成了BEFB的模型与原始模型相比,可以实现更好的分类准确率。本文的工作首次表明,通过结合类形状特征和纹理特征来提高DCNNs的鲁棒性是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57c4/12425196/10c2c1397b96/pone.0330299.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验