Suppr超能文献

使用Njobvu-AI开发定制计算机视觉模型:一个用于生态研究的协作式、用户友好型平台。

Developing custom computer vision models with Njobvu-AI: A collaborative, user-friendly platform for ecological research.

作者信息

Appel Cara L, Subramanian Ashwin, Koning Jonathan S, Ngosi Marnet, Sullivan Christopher M, Levi Taal, Lesmeister Damon B

机构信息

Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA.

Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon, USA.

出版信息

Ecol Appl. 2025 Sep;35(6):e70096. doi: 10.1002/eap.70096.

Abstract

Computer vision models show great promise for assisting researchers with rapid processing of ecological data from many sources, including images from camera traps. Access to user-friendly workflows offering collaborative features, remote and local access, and data control will enable greater adoption of computer vision models and accelerate the time between data collection and analysis for many conservation and research programs. We present Njobvu-AI, a no-code tool for multiuser image labeling, model training, image classification, and review. Using this tool, we demonstrate training and deploying a YOLO multiclass detector model using a modest dataset of 33,664 camera trap images of 37 animal species from Nkhotakota Wildlife Reserve, Malawi. We then applied our model to an independent dataset and evaluated its performance in terms of filtering empty images, species classification, species richness, and per-image animal counts. Our model filtered over 3 million empty images and had similar sensitivity but lower specificity than the MegaDetector model at differentiating empty images from those with animals. Classification performance was high for species with >1000 training images (average precision, recall, and F1 >0.70) and moderate overall (macro-averaged precision = 0.64, recall = 0.76, F1 = 0.63). Site-level species richness using predicted detections with and without manual review were highly concordant, especially when a score threshold of 0.95 was applied ( = 0.91). Counts of animals per image were predicted accurately for many species but underestimated by up to 22% for those in large groups. This workflow represents an option for researchers to implement custom computer vision models for even modest-sized ecological datasets in an all-in-one, collaborative, no-code platform.

摘要

计算机视觉模型在协助研究人员快速处理来自多种来源的生态数据方面显示出巨大潜力,这些数据来源包括来自相机陷阱的图像。提供协作功能、远程和本地访问以及数据控制的用户友好工作流程将使计算机视觉模型得到更广泛的应用,并加快许多保护和研究项目从数据收集到分析的时间。我们展示了Njobvu-AI,这是一种用于多用户图像标注、模型训练、图像分类和审查的无代码工具。使用这个工具,我们展示了如何使用来自马拉维恩科塔科塔野生动物保护区的37种动物的33664张相机陷阱图像的适度数据集来训练和部署YOLO多类检测器模型。然后,我们将模型应用于一个独立的数据集,并从过滤空图像、物种分类、物种丰富度和每张图像的动物数量方面评估其性能。我们的模型过滤了超过300万张空图像,在区分空图像和有动物的图像方面,其灵敏度与MegaDetector模型相似,但特异性较低。对于训练图像超过1000张的物种,分类性能较高(平均精度、召回率和F1均>0.70),总体表现中等(宏观平均精度=0.64,召回率=0.76,F1=0.63)。使用有和没有人工审查的预测检测结果得出的地点级物种丰富度高度一致,特别是当应用0.95的分数阈值时( =0.91)。许多物种的每张图像动物数量预测准确,但对于大群体中的物种,预测数量低估了22%。这个工作流程为研究人员提供了一个选择,即在一个一体化、协作式、无代码的平台上,为规模适中的生态数据集实施定制的计算机视觉模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7ea/12426366/34cc0418efdf/EAP-35-e70096-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验