Suppr超能文献

一种利用深度学习算法控制自动物种识别错误率的新方法。

A new method to control error rates in automated species identification with deep learning algorithms.

机构信息

MARBEC, Univ of Montpellier, CNRS, IRD, Ifremer, Montpellier, France.

Research-Team ICAR, LIRMM, Univ of Montpellier, CNRS, Montpellier, France.

出版信息

Sci Rep. 2020 Jul 3;10(1):10972. doi: 10.1038/s41598-020-67573-7.

Abstract

Processing data from surveys using photos or videos remains a major bottleneck in ecology. Deep Learning Algorithms (DLAs) have been increasingly used to automatically identify organisms on images. However, despite recent advances, it remains difficult to control the error rate of such methods. Here, we proposed a new framework to control the error rate of DLAs. More precisely, for each species, a confidence threshold was automatically computed using a training dataset independent from the one used to train the DLAs. These species-specific thresholds were then used to post-process the outputs of the DLAs, assigning classification scores to each class for a given image including a new class called "unsure". We applied this framework to a study case identifying 20 fish species from 13,232 underwater images on coral reefs. The overall rate of species misclassification decreased from 22% with the raw DLAs to 2.98% after post-processing using the thresholds defined to minimize the risk of misclassification. This new framework has the potential to unclog the bottleneck of information extraction from massive digital data while ensuring a high level of accuracy in biodiversity assessment.

摘要

使用照片或视频处理调查数据仍然是生态学中的一个主要瓶颈。深度学习算法 (DLAs) 已越来越多地用于自动识别图像中的生物。然而,尽管最近取得了进展,但仍然难以控制此类方法的错误率。在这里,我们提出了一种新的框架来控制 DLAs 的错误率。更准确地说,对于每个物种,使用与训练 DLAs 不同的独立训练数据集自动计算置信度阈值。然后,这些特定于物种的阈值用于对 DLAs 的输出进行后处理,为给定图像中的每个类分配分类分数,包括一个名为“不确定”的新类。我们将此框架应用于一个案例研究,从珊瑚礁上的 13232 张水下图像中识别出 20 种鱼类。通过使用定义的阈值进行后处理后,整体物种误分类率从原始 DLAs 的 22%降低到 2.98%,以最小化误分类风险。这个新框架有可能在确保生物多样性评估具有高准确性的同时,消除从海量数字数据中提取信息的瓶颈。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0e/7334229/f303bfb71956/41598_2020_67573_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验