Suppr超能文献

3D生物打印的人诱导多能干细胞来源的神经祖细胞作为研究神经发生微环境的新型平台。

3D bioprinted human iPSC-derived neural progenitor cells as a novel platform for studying neurogenic niche.

作者信息

Machado Lucas Simões, Ferreira Paula Scanavez, Pires Marina Rodrigues, Bim Larissa Valdemarin, de Oliveira Natália Heloísa, Salles Geisa Rodrigues, Ferreira Natalia Dall'Agnol, Cruz Elisa Marozzi, Porcionatto Marimelia Aparecida

出版信息

APL Bioeng. 2025 Sep 9;9(3):036116. doi: 10.1063/5.0276704. eCollection 2025 Sep.

Abstract

Animal models, especially rodents, used to study neurodevelopment have significantly advanced our comprehension of cellular and molecular mechanisms. Nevertheless, differences in species-specific structures, gestation periods, and interneuronal connections limit animal models' ability to represent human neurodevelopment accurately. The unique characteristics of primate neural progenitor cells (NPCs) enable cortex expansion with gyrus formation, which does not occur in lissencephalic animals, like rodents. Therefore, there is a need for novel models using human cells that recapitulate the complexity of human brain development. Along with organoids, 3D bioprinting offers a platform for creating more complex models. We developed, extensively characterized, and successfully used a Geltrex™/GelMA hydrogel blend to bioprint human induced pluripotent stem cells-derived NPCs (hNPCs). We show that 3D bioprinted hNPCs can self-organize, revealing key features of a neurogenic niche, including proliferation, differentiation, and migration, remaining viable for over 110 days. Within the first 20 days, bioprinted constructs showed the formation of positive cell clusters for the neurogenic niche cell markers FABP7, NESTIN, and GFAP. Clusters were interconnected by process bundles supporting cell migration. The cells proliferated within the clusters, and over time, NPCs originated TUBB3 neurons with long axonal tracts, prominent around the clusters. We propose this as a 4D model to study neurogenic niches' key cellular and molecular features in a 3D bioprinted scaffold, adding time as the fourth dimension. Neuronal maturation in this dynamic model recapitulates key neurogenic niche properties, making it suitable for neurodevelopmental disease modeling and drug screening.

摘要

用于研究神经发育的动物模型,尤其是啮齿动物模型,极大地推动了我们对细胞和分子机制的理解。然而,物种特异性结构、妊娠期和神经元间连接的差异限制了动物模型准确呈现人类神经发育的能力。灵长类神经祖细胞(NPCs)的独特特性使得大脑皮层能够随着脑回形成而扩展,而这在无脑回动物(如啮齿动物)中不会发生。因此,需要使用人类细胞的新型模型来重现人类大脑发育的复杂性。与类器官一起,3D生物打印提供了一个创建更复杂模型的平台。我们开发、全面表征并成功使用了一种Geltrex™/GelMA水凝胶混合物来生物打印人诱导多能干细胞衍生的NPCs(hNPCs)。我们表明,3D生物打印的hNPCs能够自我组织,展现出神经源性微环境的关键特征,包括增殖、分化和迁移,并且在超过110天内保持存活。在前20天内,生物打印构建体显示出形成了神经源性微环境细胞标志物FABP7、NESTIN和GFAP的阳性细胞簇。这些簇通过支持细胞迁移的突起束相互连接。细胞在簇内增殖,随着时间推移,NPCs产生了具有长轴突束的TUBB3神经元,在簇周围尤为突出。我们提出将此作为一个4D模型,在3D生物打印支架中研究神经源性微环境的关键细胞和分子特征,并将时间作为第四维度。这个动态模型中的神经元成熟过程重现了关键的神经源性微环境特性,使其适用于神经发育疾病建模和药物筛选。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验