Suppr超能文献

利用微阵列数据的荟萃分析鉴定和表征高产奶牛高产奶相关的基因网络和关键基因。

Identification and characterization of gene networks and key genes related to the high-yield production of milk in high-yield cows using meta-analysis of microarray data.

作者信息

Rahmatzadeh Mahdi, Shokri-Gharelo Reza, Derakhti-Dizaji Morteza, Bazzaz Asghar, Mahmoudi Bizhan

机构信息

Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Sugar Beet Seed Institute (SBSI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

出版信息

Biochem Biophys Rep. 2025 Jun 14;43:102090. doi: 10.1016/j.bbrep.2025.102090. eCollection 2025 Sep.

Abstract

Milk yield is most important economic trait in dairy cows and understanding molecular basis and components involved in high-yield production is one of crucial steps to develop and select new breeds. In this study, we used combination of two statistical methods based on the and effect sized to meta-analysis three datasets followed with construction of weighted gene co-expression network based on the expression matrix of differentially expressed genes identified in meta-analysis to detect major gene modules and hub genes. Based on the FDR cut-off<0.05 and Log fold change>2 and < 0.5, we identified 1028 differentially expressed genes that were shared between the Fisher and REM method and were consistent across datasets. Molecular function analysis showed that upregulated differentially expressed genes mostly enriched to ion binding, small molecule binding, and identical protein binding while downregulated genes were enriched to catalytic activity (Bonferroni test; threshold of 0.05). Weighted gene co-expression network analysis identified three major modules associated with fatty acid metabolism, PPAR signaling pathway, insulin resistance, terpenoid backbone biosynthesis, and steroid biosynthesis. A total of 12 hub genes (one downregulated and 11 upregulated) identified from protein-protein interaction network of modules. This study could identify new differentially expressed genes related to lactation processes in high-yield-cows. Moreover, we could reveal some gene modules and hub genes in each module which are biologically more meaningful.

摘要

产奶量是奶牛最重要的经济性状,了解高产生产所涉及的分子基础和组成部分是培育和选择新品种的关键步骤之一。在本研究中,我们基于效应量使用两种统计方法的组合对三个数据集进行荟萃分析,随后基于荟萃分析中鉴定的差异表达基因的表达矩阵构建加权基因共表达网络,以检测主要基因模块和枢纽基因。基于FDR截止值<0.05和对数变化倍数>2以及<0.5,我们鉴定出1028个在Fisher和REM方法之间共享且在各数据集间一致的差异表达基因。分子功能分析表明,上调的差异表达基因大多富集于离子结合、小分子结合和相同蛋白结合,而下调基因则富集于催化活性(Bonferroni检验;阈值为0.05)。加权基因共表达网络分析确定了与脂肪酸代谢、PPAR信号通路、胰岛素抵抗、萜类骨架生物合成和类固醇生物合成相关的三个主要模块。从模块的蛋白质-蛋白质相互作用网络中总共鉴定出12个枢纽基因(1个下调和11个上调)。本研究可以鉴定出与高产奶牛泌乳过程相关的新的差异表达基因。此外,我们可以揭示每个模块中一些具有生物学意义的基因模块和枢纽基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/12420518/eee8a63592a3/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验