Suppr超能文献

将因果关系与可解释机器学习相结合,以揭示超分子铜-杯[8]芳烃催化剂催化C-N偶联反应的反应坐标。

Coupling causality and interpretable machine learning to reveal the reaction coordinate of C-N coupling with a supramolecular Cu-calix[8]arene catalyst.

作者信息

Talmazan R A, Gamper J, Castillo I, Hofer T S, Podewitz M

机构信息

Institute of Materials Chemistry, TU Wien Getreidemarkt 9 A-1060 Wien Austria

Institute of General, Inorganic and Theoretical Chemistry, Leopold Franzens University of Innsbruck Innrain 80/82 6020 Innsbruck Austria

出版信息

Digit Discov. 2025 Sep 2. doi: 10.1039/d5dd00216h.

Abstract

Supramolecular 3d transition-metal catalysts are large, flexible systems with intricate interactions, resulting in complex reaction coordinates. To capture their dynamic nature, we developed a broadly applicable, high-throughput workflow, that leverages quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) in explicit solvent, to investigate a Cu(i)-calix[8]arene-catalysed C-N coupling reaction. The system complexity and high amount of data generated from sampling the reaction requires automated analyses. To identify and quantify the reaction coordinate from noisy simulation trajectories, we applied interpretable machine learning techniques (Lasso, Random Forest, Logistic Regression) in a consensus model, alongside dimensionality reduction methods (PCA, LDA, tICA). By employing a Granger Causality model, we move beyond the traditional view of a reaction coordinate, by defining it instead as a sequence of molecular motions leading up to the reaction.

摘要

超分子三维过渡金属催化剂是具有复杂相互作用的大型灵活体系,导致反应坐标复杂。为了捕捉它们的动态性质,我们开发了一种广泛适用的高通量工作流程,该流程利用显式溶剂中的量子力学/分子力学分子动力学(QM/MM MD)来研究铜(I)-杯[8]芳烃催化的碳氮偶联反应。系统的复杂性以及反应采样产生的大量数据需要进行自动化分析。为了从嘈杂的模拟轨迹中识别和量化反应坐标,我们在一个共识模型中应用了可解释的机器学习技术(套索回归、随机森林、逻辑回归),同时还应用了降维方法(主成分分析、线性判别分析、时滞独立成分分析)。通过采用格兰杰因果关系模型,我们超越了传统的反应坐标观点,将其定义为导致反应的一系列分子运动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验