Panja Riya, Bhattacharyya Tapas Kumar, Paul Aditya, Ray Saibal, Abd El Wahed Ahmed, Ceruti Arianna, Joardar Siddhartha Narayan
Government College of Engineering and Ceramic Technology, P.O., Beleghata, Kolkata 700010, West Bengal, India.
Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, P.O., Belgachia, Kolkata 700037, West Bengal, India.
Nanomaterials (Basel). 2025 Aug 28;15(17):1318. doi: 10.3390/nano15171318.
The synthesis of nanoscale particles with antibacterial properties has garnered significant attention in pharmaceutical research, driven by the escalating threat of antibiotic-resistant bacteria. This study investigates the antibacterial efficacy of Zn-Co ferrite nanoparticles against virulent, antibiotic-resistant, and biofilm-forming strains of Methods: Three nanoparticle variants-S1 (ZnCoFeO), S2 (ZnCoFeO), and S3 (ZnCoFeO)-were synthesized using the solution combustion method by systematically varying the Zn:Co molar ratio. The Scanning Electron Micrograph, X-ray diffraction analysis, Complementary Fourier-transform infrared, Minimum Inhibitory Concentration, and Minimum Bactericidal Concentration were performed.
The SEM spectroscopy study revealed distinct morphological differences as a function of the cobalt substitution level within the spinel ferrite matrix. At the highest level of cobalt substitution (ZnCoFeO), the microstructure displayed significant irregularities, with enhanced agglomeration and a notably broader particle size distribution. X-ray diffraction analysis confirmed the formation of crystalline structures, with an average crystallite size of 12.65 nm. Complementary Fourier-transform infrared spectroscopy revealed characteristic absorption bands in the 400-600 cm range, indicative of the cubic spinel structure of the ferrite nanoparticles. The higher-frequency band was associated with metal-oxide stretching in the tetrahedral sites, while the lower-frequency band corresponded to stretching in the octahedral sites. The Minimum Inhibitory Concentration and Minimum Bactericidal Concentration assays revealed that Zn-Co ferrite nanoparticles possess potent antibacterial activity against virulent, antibiotic-resistant, and biofilm-forming strains of .
Increasing the molar ratio of Zn to Co enhances the antibacterial activity of the nanoparticles. These findings suggest that Zn-Co ferrite nanoparticles could serve as a promising alternative to conventional antibacterial agents for combating multidrug-resistant pathogenic bacteria in the future.
在耐药细菌构成的威胁日益加剧的推动下,具有抗菌特性的纳米级颗粒的合成在药物研究中受到了广泛关注。本研究调查了锌钴铁氧体纳米颗粒对致病性、耐药性和形成生物膜菌株的抗菌效果。方法:通过系统改变锌与钴的摩尔比,采用溶液燃烧法合成了三种纳米颗粒变体——S1(ZnCoFeO)、S2(ZnCoFeO)和S3(ZnCoFeO)。进行了扫描电子显微镜、X射线衍射分析、傅里叶变换红外光谱、最低抑菌浓度和最低杀菌浓度测定。结果:扫描电子显微镜光谱研究显示,随着尖晶石铁氧体基质中钴替代水平的变化,形态存在明显差异。在钴替代水平最高时(ZnCoFeO),微观结构显示出明显的不规则性,团聚增强,粒径分布明显更宽。X射线衍射分析证实形成了晶体结构,平均晶粒尺寸为12.65纳米。傅里叶变换红外光谱显示在400 - 600厘米范围内有特征吸收带,表明铁氧体纳米颗粒具有立方尖晶石结构。高频带与四面体位置的金属氧化物拉伸有关,而低频带对应于八面体位置的拉伸。最低抑菌浓度和最低杀菌浓度测定表明,锌钴铁氧体纳米颗粒对致病性、耐药性和形成生物膜的菌株具有强大的抗菌活性。结论:增加锌与钴的摩尔比可增强纳米颗粒的抗菌活性。这些发现表明,锌钴铁氧体纳米颗粒未来可能成为对抗多重耐药病原菌的传统抗菌剂的有前景的替代品。