Tian Feng, Mattison Ben, Yang Weijian
Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA.
Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.
Sci Adv. 2025 Sep 12;11(37):eadr6687. doi: 10.1126/sciadv.adr6687.
Mask-based integrated fluorescence microscopy is a compact imaging technique for biomedical research. It can perform snapshot 3D imaging through a thin optical mask with a scalable field of view (FOV). Integrated microscopy uses computational algorithms for object reconstruction, but efficient reconstruction algorithms for large-scale data have been lacking. Here, we developed DeepInMiniscope, a miniaturized integrated microscope featuring a custom-designed optical mask and an efficient physics-informed deep learning model that markedly reduces computational demand. Parts of the 3D object can be individually reconstructed and combined. Our deep learning algorithm can reconstruct object volumes over 4 millimeters by 6 millimeters by 0.6 millimeters. We demonstrated substantial improvement in both reconstruction quality and speed compared to traditional methods for large-scale data. Notably, we imaged neuronal activity with near-cellular resolution in awake mouse cortex, representing a substantial leap over existing integrated microscopes. DeepInMiniscope holds great promise for scalable, large-FOV, high-speed, 3D imaging applications with compact device footprint.
基于掩膜的集成荧光显微镜是一种用于生物医学研究的紧凑型成像技术。它可以通过具有可扩展视场(FOV)的薄光学掩膜进行快照三维成像。集成显微镜使用计算算法进行物体重建,但一直缺乏适用于大规模数据的高效重建算法。在此,我们开发了DeepInMiniscope,这是一种小型化的集成显微镜,其特点是具有定制设计的光学掩膜和一个能显著降低计算需求的高效物理信息深度学习模型。三维物体的各个部分可以单独重建并组合。我们的深度学习算法能够重建超过4毫米×6毫米×0.6毫米的物体体积。与传统的大规模数据处理方法相比,我们在重建质量和速度方面都有了显著提升。值得注意的是,我们在清醒小鼠皮层中以接近细胞分辨率对神经元活动进行了成像,这代表了相对于现有集成显微镜的重大飞跃。DeepInMiniscope在紧凑的设备尺寸下,对于可扩展、大视场、高速三维成像应用具有巨大潜力。