Long Xu, Yang Qiang, Dong Weihe, Li Xiaokun, Wang Kuanquan, Dong Suyu, Luo Gongning, Zhang Xianyu, Yang Tiansong, Gao Xin, Wang Guohua
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
School of Computer Science and Technology, Heilongjiang University, Harbin, China.
PLoS Comput Biol. 2025 Sep 12;21(9):e1013050. doi: 10.1371/journal.pcbi.1013050. eCollection 2025 Sep.
Adaptive immunity is a targeted immune response that enables the body to identify and eliminate foreign pathogens, playing a critical role in the anti-tumor immune response. Tumor cell expression of antigens forms the foundation for inducing this adaptive response. However, the human leukocyte antigens (HLA)-restricted recognition of antigens by T-cell receptors (TCR) limits their ability to detect all neoantigens, with only a small subset capable of activating T-cells. Accurately predicting neoantigen binding to TCR is, therefore, crucial for assessing their immunogenic potential in clinical settings. We present THLANet, a deep learning model designed to predict the binding specificity of TCR to neoantigens presented by class I HLAs. THLANet employs evolutionary scale modeling-2 (ESM-2), replacing the traditional embedding methods to enhance sequence feature representation. Using scTCR-seq data, we obtained the TCR immune repertoire and constructed a TCR-pHLA binding database to validate THLANet's clinical potential. The model's performance was further evaluated using clinical cancer data across various cancer types. Additionally, by analyzing divided complementarity-determining region (CDR3) sequences and simulating alanine scanning of antigen sequences, we provided new insights into the 3D binding interactions of TCRs and antigens. Predicting TCR-neoantigen pairing remains a significant challenge in immunology, THLANet provides accurate predictions using only the TCR sequence (CDR3β), antigen sequence, and class I HLA, offering novel insights into TCR-antigen interactions.
适应性免疫是一种靶向性免疫反应,使机体能够识别和清除外来病原体,在抗肿瘤免疫反应中发挥关键作用。肿瘤细胞抗原的表达构成了诱导这种适应性反应的基础。然而,T细胞受体(TCR)对人类白细胞抗原(HLA)限制的抗原识别,限制了它们检测所有新抗原的能力,只有一小部分能够激活T细胞。因此,准确预测新抗原与TCR的结合对于评估其在临床环境中的免疫原性潜力至关重要。我们提出了THLANet,这是一种深度学习模型,旨在预测TCR与I类HLA呈递的新抗原的结合特异性。THLANet采用进化尺度建模-2(ESM-2),取代传统的嵌入方法以增强序列特征表示。利用单细胞TCR测序(scTCR-seq)数据,我们获得了TCR免疫库,并构建了一个TCR-pHLA结合数据库来验证THLANet的临床潜力。使用各种癌症类型的临床癌症数据进一步评估了该模型的性能。此外,通过分析分割的互补决定区(CDR3)序列并模拟抗原序列的丙氨酸扫描,我们对TCR与抗原的三维结合相互作用提供了新的见解。预测TCR-新抗原配对在免疫学中仍然是一项重大挑战,THLANet仅使用TCR序列(CDR3β)、抗原序列和I类HLA就能提供准确的预测,为TCR-抗原相互作用提供了新的见解。