Suppr超能文献

NeoaPred:一种基于肽-人类白细胞抗原复合物的表面和结构特征预测免疫原性新抗原的深度学习框架。

NeoaPred: a deep-learning framework for predicting immunogenic neoantigen based on surface and structural features of peptide-human leukocyte antigen complexes.

机构信息

School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.

International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou 510632, China.

出版信息

Bioinformatics. 2024 Sep 2;40(9). doi: 10.1093/bioinformatics/btae547.

Abstract

MOTIVATION

Neoantigens, derived from somatic mutations in cancer cells, can elicit anti-tumor immune responses when presented to autologous T cells by human leukocyte antigen. Identifying immunogenic neoantigens is crucial for cancer immunotherapy development. However, the accuracy of current bioinformatic methods remains unsatisfactory. Surface and structural features of peptide-HLA class I (pHLA-I) complexes offer valuable insight into the immunogenicity of neoantigens.

RESULTS

We present NeoaPred, a deep-learning framework for neoantigen prediction. NeoaPred accurately constructs pHLA-I complex structures, with 82.37% of the predicted structures showing an RMSD of < 1 Å. Using these structures, NeoaPred integrates differences in surface, structural, and atom group features between the mutant peptide and its wild-type counterpart to predict a foreignness score. This foreignness score is an effective factor for neoantigen prediction, achieving an AUROC (Area Under the Receiver Operating Characteristic Curve) of 0.81 and an AUPRC (Area Under the Precision-Recall Curve) of 0.54 in the test set, outperforming existing methods.

AVAILABILITY AND IMPLEMENTATION

The source code is released under an Apache v2.0 license and is available at the GitHub repository (https://github.com/Dulab2020/NeoaPred).

摘要

动机

新抗原来源于癌细胞中的体细胞突变,当与人类白细胞抗原一起呈递给自体 T 细胞时,可引发抗肿瘤免疫反应。鉴定免疫原性新抗原对于癌症免疫治疗的发展至关重要。然而,目前生物信息学方法的准确性仍不尽如人意。肽-HLA 类 I(pHLA-I)复合物的表面和结构特征为新抗原的免疫原性提供了有价值的见解。

结果

我们提出了 NeoaPred,这是一种用于新抗原预测的深度学习框架。NeoaPred 能够准确构建 pHLA-I 复合物结构,其中 82.37%的预测结构 RMSD<1Å。利用这些结构,NeoaPred 整合了突变肽与其野生型对应物在表面、结构和原子基团特征上的差异,以预测外来分数。该外来分数是新抗原预测的有效因素,在测试集中的 AUROC(接受者操作特征曲线下的面积)为 0.81,AUPRC(精度-召回曲线下的面积)为 0.54,优于现有方法。

可用性和实现

源代码在 Apache v2.0 许可证下发布,并可在 GitHub 存储库(https://github.com/Dulab2020/NeoaPred)中获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/237e/11419954/f6e4bdc11800/btae547f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验