Suppr超能文献

我们能否通过数字生物学和机器学习来预测 T 细胞特异性?

Can we predict T cell specificity with digital biology and machine learning?

机构信息

MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.

The Rosalind Franklin Institute, Didcot, UK.

出版信息

Nat Rev Immunol. 2023 Aug;23(8):511-521. doi: 10.1038/s41577-023-00835-3. Epub 2023 Feb 8.

Abstract

Recent advances in machine learning and experimental biology have offered breakthrough solutions to problems such as protein structure prediction that were long thought to be intractable. However, despite the pivotal role of the T cell receptor (TCR) in orchestrating cellular immunity in health and disease, computational reconstruction of a reliable map from a TCR to its cognate antigens remains a holy grail of systems immunology. Current data sets are limited to a negligible fraction of the universe of possible TCR-ligand pairs, and performance of state-of-the-art predictive models wanes when applied beyond these known binders. In this Perspective article, we make the case for renewed and coordinated interdisciplinary effort to tackle the problem of predicting TCR-antigen specificity. We set out the general requirements of predictive models of antigen binding, highlight critical challenges and discuss how recent advances in digital biology such as single-cell technology and machine learning may provide possible solutions. Finally, we describe how predicting TCR specificity might contribute to our understanding of the broader puzzle of antigen immunogenicity.

摘要

近年来,机器学习和实验生物学的发展为解决一些长期以来被认为难以解决的问题提供了突破性的解决方案,如蛋白质结构预测。然而,尽管 T 细胞受体 (TCR) 在调节健康和疾病中的细胞免疫方面发挥着关键作用,但从 TCR 到其同源抗原构建可靠图谱的计算重建仍然是系统免疫学的圣杯。当前的数据集中仅限于可能的 TCR-配体对的宇宙的微不足道的部分,并且当应用于这些已知的配体之外时,最先进的预测模型的性能会下降。在这篇观点文章中,我们主张重新开展协调的跨学科努力,以解决预测 TCR-抗原特异性的问题。我们提出了抗原结合预测模型的一般要求,强调了关键挑战,并讨论了单细胞技术和机器学习等数字生物学的最新进展如何提供可能的解决方案。最后,我们描述了预测 TCR 特异性如何有助于我们理解更广泛的抗原免疫原性难题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验