Shuai Liye, Li Qun, Li Xiuming, Wu Jiabin, Huang Xinning, Yu Jianglong, Dou Jinxiao, Li Huaiguang, Chen Xingxing
Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, China; Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, China.
Guangdong Basic Research Center of Excellence for Aggregate Science, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
J Colloid Interface Sci. 2026 Jan 15;702(Pt 2):138940. doi: 10.1016/j.jcis.2025.138940. Epub 2025 Sep 7.
Photoelectrochemical (PEC) water splitting provides a sustainable approach for hydrogen generation, yet challenges such as charge recombination and sluggish kinetics persist. Herein, a high-efficiency bismuth vanadate (BiVO) photoanode modified with an ultrathin layer of europium-doped (Eu-doped) amorphous iron oxyhydroxide (BiVO/Eu:FeOOH) as cocatalysts is demonstrated, which is prepared via a facile chemical bath deposition method. The optimized BiVO/Eu:FeOOH photoanode achieves a photocurrent density of 5.77 ± 0.15 mA/cm at 1.23 V vs. reversible hydrogen electrode (V) under Air Mass 1.5 Global (AM 1.5G) illumination, significantly outperforming bare BiVO (0.83 ± 0.15 mA/cm) and BiVO/FeOOH (4.63 ± 0.20 mA/cm). Advanced characterization reveals that Eu-doping forms Eu-O-Fe active sites, alters the Fe coordination environment, and enhances charge separation at the interface. Furthermore, ultrathin Eu:FeOOH coating promotes interfacial water adsorption and optimizes electron transfer during the oxygen evolution reaction (OER). Density functional theory (DFT) calculations show that Eu-doping varies the rate-limiting step from *O → *OOH to *OH → *O, lowering the overpotential. This work establishes a strategy for designing efficient cocatalysts to enhance PEC water oxidation performance.
光电化学(PEC)水分解为制氢提供了一种可持续的方法,但诸如电荷复合和动力学迟缓等挑战依然存在。在此,展示了一种用超薄的铕掺杂(Eu掺杂)非晶态羟基氧化铁(BiVO/Eu:FeOOH)作为助催化剂修饰的高效钒酸铋(BiVO)光阳极,其通过简便的化学浴沉积法制备。优化后的BiVO/Eu:FeOOH光阳极在空气质量1.5全球(AM 1.5G)光照下,相对于可逆氢电极(V)在1.23 V时实现了5.77±0.15 mA/cm²的光电流密度,显著优于裸BiVO(0.83±0.15 mA/cm²)和BiVO/FeOOH(4.63±0.20 mA/cm²)。先进的表征表明,Eu掺杂形成了Eu-O-Fe活性位点,改变了Fe的配位环境,并增强了界面处的电荷分离。此外,超薄的Eu:FeOOH涂层促进了界面水吸附,并优化了析氧反应(OER)过程中的电子转移。密度泛函理论(DFT)计算表明,Eu掺杂将限速步骤从*O→OOH改变为OH→*O,降低了过电位。这项工作建立了一种设计高效助催化剂以增强PEC水氧化性能的策略。