Suppr超能文献

Quinones as toxic metabolites of benzene.

作者信息

Irons R D

出版信息

J Toxicol Environ Health. 1985;16(5):673-8. doi: 10.1080/15287398509530777.

Abstract

Occupational exposure to benzene has long been associated with toxicity to the blood and bone marrow, including lymphocytopenia, pancytopenia, aplastic anemia, acute myelogenous leukemia, and possibly lymphoma. A variety of studies have established that benzene itself is not the toxic species but requires metabolism to reactive intermediates. The bioactivation of benzene is complex. Both primary and secondary oxidation of benzene and its metabolites are mediated via cytochrome P-450 in the liver, although the role of secondary metabolism in the bone marrow is not clear. Toxicity is associated with the dihydroxy metabolites, hydroquinone and catechol, which concentrate in bone marrow. Hydroquinone and its terminal oxidation product, p-benzoquinone, have been demonstrated to be potent suppressors of cell growth in culture. Suppression of lymphocyte blastogenesis by these compounds is a sulfhydryl-dependent process and occurs at concentrations that do not result in cell death, or in detectable alterations in energy metabolism, intracellular glutathione concentration, or protein synthesis. Recent studies suggest that these compounds and other membrane-penetrating sulfhydryl alkylating agents, such as N-ethylmaleimide and cytochalasin A, and endogenous regulatory molecules, such as soluble immune response suppressor (SIRS), interfere with microtubule assembly in vitro and selectively interfere with microtubule-dependent cell functions at identical concentrations. These agents appear to react with nucleophilic sulfhydryl groups essential for guanosine triphosphate binding to tubulin that are particularly sensitive to sulfhydryl-alkylating agents.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验