Suppr超能文献

利用高能区域先验知识减少低能虚拟单色成像中的图像域金属伪影

Image-domain metal artifact reduction in low-energy VMI using high-energy regional prior.

作者信息

Wang Dan, Zou Yu, Zhang Qilin, Yang Yi, Shi Zhe, Huang Juying, Yang Zhi

机构信息

School of Biomedical Engineering, Capital Medical University, Beijing, China.

Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.

出版信息

Med Phys. 2025 Sep;52(9):e18118. doi: 10.1002/mp.18118.

Abstract

BACKGROUND

Metal artifacts degrade the clinical utility of virtual monochromatic images (VMIs), particularly in low energy levels. Nevertheless, low-energy VMIs have essential clinical applications, such as reducing the volume of iodinated contrast material administered, salvaging poorly attenuated contrast-enhanced CT studies, and analyzing arterial vasculature during the venous phase. Conventional metal artifact reduction algorithms may introduce new artifacts and obscure soft tissue details.

PURPOSE

The aim of this study is to develop a practical image-domain solution for significantly reducing the metal artifacts in low-energy VMIs while preserving the clarity of soft tissues and metal boundaries.

METHODS

A mapping model was developed to establish a relationship between optimal VMI and the material basis images (MBIs) in artifact-free regions. This model was subsequently used to correct artifact-affected regions in MBIs. Finally, artifact-reduced low-energy VMIs were synthesized from the updated MBIs. The approach, referred to as regional model-based metal artifact reduction (rMAR), utilized the mapping model to effectively reduce metal artifacts. To validate the efficacy of the proposed method, both phantom and patient data acquired from Philips scanner were used. The scanner's built-in metal artifact reduction for orthopedic implants, known as OMAR, was employed. Comprehensive comparisons were conducted among four image processing strategies: VMI alone, VMI combined with OMAR (VMI + OMAR), VMI combined with the proposed rMAR (VMI + rMAR), and a combination of all three methods (VMI + OMAR + rMAR). Evaluations were performed using visual assessment, line profile analysis, and measurement of the ∆CT number.

RESULTS

High-energy VMIs exhibit significantly fewer metal artifacts compared to those at low energy levels, as demonstrated in both phantom and patient results. Although conventional metal artifact reduction algorithms can mitigate the existing artifacts, they often introduce new ones. In contrast, the proposed rMAR method effectively reduces artifacts in low-energy VMIs, achieving improved image quality without introducing new artifacts. In specific cases, such as postoperative VMIs of hip prosthesis implants, the combined VMI + OMAR + rMAR approach demonstrates superior metal artifact reduction compared to either OMAR or rMAR alone. Quantitative line profile analysis indicated that the proposed rMAR method produced images with artifact levels more closely resembling the ground truth than those processed with OMAR. The ΔCT number was significantly lower in the images processed with rMAR than in those processed with OMAR.

CONCLUSION

The proposed rMAR method effectively achieves metal artifact reduction, particularly in low-energy VMIs, while preserving the clarity of soft tissues and metal boundaries. Consequently, the diagnostic value of low-energy VMIs containing metal implants is enhanced.

摘要

背景

金属伪影会降低虚拟单色图像(VMI)的临床效用,尤其是在低能量水平时。然而,低能量VMI具有重要的临床应用,如减少碘化对比剂的用量、挽救衰减不佳的对比增强CT研究以及在静脉期分析动脉血管系统。传统的金属伪影减少算法可能会引入新的伪影并模糊软组织细节。

目的

本研究的目的是开发一种实用的图像域解决方案,以显著减少低能量VMI中的金属伪影,同时保持软组织和金属边界的清晰度。

方法

开发了一种映射模型,以建立最佳VMI与无伪影区域中的物质基础图像(MBI)之间的关系。该模型随后用于校正MBI中受伪影影响的区域。最后,从更新后的MBI合成减少伪影的低能量VMI。该方法称为基于区域模型的金属伪影减少(rMAR),利用映射模型有效减少金属伪影。为了验证所提出方法的有效性,使用了从飞利浦扫描仪获取的体模和患者数据。采用了扫描仪针对骨科植入物的内置金属伪影减少功能,即OMAR。对四种图像处理策略进行了全面比较:单独的VMI、VMI与OMAR结合(VMI + OMAR)、VMI与所提出的rMAR结合(VMI + rMAR)以及所有三种方法的组合(VMI + OMAR + rMAR)。使用视觉评估、线轮廓分析和ΔCT值测量进行评估。

结果

在体模和患者结果中均表明,与低能量水平的VMI相比,高能量VMI的金属伪影明显更少。虽然传统的金属伪影减少算法可以减轻现有的伪影,但它们往往会引入新的伪影。相比之下,所提出的rMAR方法有效地减少了低能量VMI中的伪影,在不引入新伪影的情况下提高了图像质量。在特定情况下,如髋关节假体植入术后的VMI,VMI + OMAR + rMAR组合方法在减少金属伪影方面比单独使用OMAR或rMAR表现更优。定量线轮廓分析表明,所提出的rMAR方法生成的图像伪影水平比用OMAR处理的图像更接近真实情况。用rMAR处理的图像中的ΔCT值明显低于用OMAR处理的图像。

结论

所提出的rMAR方法有效地实现了金属伪影的减少,特别是在低能量VMI中,同时保持了软组织和金属边界的清晰度。因此,提高了包含金属植入物的低能量VMI的诊断价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e5d/12431831/0697d74e2fe9/MP-52-0-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验