Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do, 446-701, Korea.
Med Phys. 2018 Feb;45(2):714-724. doi: 10.1002/mp.12719. Epub 2018 Jan 2.
In a dental CT scan, the presence of dental fillings or dental implants generates severe metal artifacts that often compromise readability of the CT images. Many metal artifact reduction (MAR) techniques have been introduced, but dental CT scans still suffer from severe metal artifacts particularly when multiple dental fillings or implants exist around the region of interest. The high attenuation coefficient of teeth often causes erroneous metal segmentation, compromising the MAR performance. We propose a metal segmentation method for a dental CT that is based on dual-energy imaging with a narrow energy gap.
Unlike a conventional dual-energy CT, we acquire two projection data sets at two close tube voltages (80 and 90 kV ), and then, we compute the difference image between the two projection images with an optimized weighting factor so as to maximize the contrast of the metal regions. We reconstruct CT images from the weighted difference image to identify the metal region with global thresholding. We forward project the identified metal region to designate metal trace on the projection image. We substitute the pixel values on the metal trace with the ones computed by the region filling method. The region filling in the metal trace removes high-intensity data made by the metallic objects from the projection image. We reconstruct final CT images from the region-filled projection image with the fusion-based approach. We have done imaging experiments on a dental phantom and a human skull phantom using a lab-built micro-CT and a commercial dental CT system.
We have corrected the projection images of a dental phantom and a human skull phantom using the single-energy and dual-energy-based metal segmentation methods. The single-energy-based method often failed in correcting the metal artifacts on the slices on which tooth enamel exists. The dual-energy-based method showed better MAR performances in all cases regardless of the presence of tooth enamel on the slice of interest. We have compared the MAR performances between both methods in terms of the relative error (REL), the sum of squared difference (SSD) and the normalized absolute difference (NAD). For the dental phantom images corrected by the single-energy-based method, the metric values were 95.3%, 94.5%, and 90.6%, respectively, while they were 90.1%, 90.05%, and 86.4%, respectively, for the images corrected by the dual-energy-based method. For the human skull phantom images, the metric values were improved from 95.6%, 91.5%, and 89.6%, respectively, to 88.2%, 82.5%, and 81.3%, respectively.
The proposed dual-energy-based method has shown better performance in metal segmentation leading to better MAR performance in dental imaging. We expect the proposed metal segmentation method can be used to improve the MAR performance of existing MAR techniques that have metal segmentation steps in their correction procedures.
在牙科 CT 扫描中,牙齿填充物或牙种植体的存在会产生严重的金属伪影,这常常会影响 CT 图像的可读性。已经引入了许多金属伪影减少(MAR)技术,但牙科 CT 扫描仍然存在严重的金属伪影,特别是当感兴趣区域周围存在多个牙齿填充物或种植体时。牙齿的高衰减系数通常会导致错误的金属分割,从而影响 MAR 性能。我们提出了一种基于窄能隙双能成像的牙科 CT 金属分割方法。
与传统的双能 CT 不同,我们在两个接近的管电压(80 和 90 kV)下采集两个投影数据集,然后通过优化的加权因子计算两个投影图像之间的差值图像,以最大化金属区域的对比度。我们从加权差值图像重建 CT 图像,以确定金属区域的全局阈值。我们正向投影识别到的金属区域,在投影图像上指定金属迹线。我们用区域填充法计算的像素值替换金属迹线上的像素值。金属迹线上的区域填充从投影图像中去除由金属物体产生的高强度数据。我们用基于融合的方法从填充区域的投影图像重建最终的 CT 图像。我们使用实验室构建的微 CT 和商业牙科 CT 系统对牙科体模和人类颅骨体模进行了成像实验。
我们使用单能和双能基于的金属分割方法校正了牙科体模和人类颅骨体模的投影图像。单能方法在存在牙釉质的切片上校正金属伪影时经常失败。基于双能的方法在所有情况下都表现出更好的 MAR 性能,无论感兴趣切片上是否存在牙釉质。我们比较了两种方法在相对误差(REL)、平方和差(SSD)和归一化绝对差(NAD)方面的 MAR 性能。对于用单能方法校正的牙科体模图像,度量值分别为 95.3%、94.5%和 90.6%,而用双能方法校正的图像的度量值分别为 90.1%、90.05%和 86.4%。对于人类颅骨体模图像,度量值分别从 95.6%、91.5%和 89.6%提高到 88.2%、82.5%和 81.3%。
所提出的基于双能的方法在金属分割方面表现出更好的性能,从而在牙科成像中实现更好的 MAR 性能。我们期望所提出的金属分割方法可用于改进现有的 MAR 技术,这些技术在其校正过程中具有金属分割步骤。