Richards Claire, Chen Hao, O'Rourke Matthew, Bannister Ashley, Owen Grace, Volkerling Alexander, Ghosh Arnab, Gorrie Catherine A, Gallego-Ortega David, Bottomley Amy L, Padula Matthew P, McGrath Kristine C, Cole Louise, Hansbro Philip M, McClements Lana
School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
Nat Commun. 2025 Sep 12;16(1):8267. doi: 10.1038/s41467-025-62996-0.
Trophoblast organoids can provide crucial insights into mechanisms of placentation, however their potential is limited by highly variable extracellular matrices unable to reflect in vivo tissues. Here, we present a bioprinted placental organoid model, generated using the first trimester trophoblast cell line, ACH-3P, and a synthetic polyethylene glycol (PEG) matrix. Bioprinted or Matrigel-embedded organoids differentiate spontaneously from cytotrophoblasts into two major subtypes: extravillous trophoblasts (EVTs) and syncytiotrophoblasts (STBs). Bioprinted organoids are driven towards EVT differentiation and show close similarity with early human placenta or primary trophoblast organoids. Inflammation inhibits proliferation and STBs within bioprinted organoids, which aspirin or metformin (0.5 mM) cannot rescue. We reverse the inside-out architecture of ACH-3P organoids by suspension culture with STBs forming on the outer layer of organoids, reflecting placental tissue. Our bioprinted methodology is applicable to trophoblast stem cells. We present a high-throughput, automated, and tuneable trophoblast organoid model that reproducibly mimics the placental microenvironment in health and disease.
滋养层类器官可为胎盘形成机制提供关键见解,然而其潜力受到高度可变的细胞外基质的限制,这些基质无法反映体内组织情况。在此,我们展示了一种生物打印的胎盘类器官模型,它是使用孕早期滋养层细胞系ACH-3P和合成聚乙二醇(PEG)基质生成的。生物打印的或基质胶包埋的类器官会自发地从细胞滋养层分化为两种主要亚型:绒毛外滋养层细胞(EVT)和合胞体滋养层细胞(STB)。生物打印的类器官倾向于向EVT分化,并且与早期人类胎盘或原代滋养层类器官表现出高度相似性。炎症会抑制生物打印类器官内的增殖和STB形成,阿司匹林或二甲双胍(0.5 mM)无法挽救这种情况。我们通过悬浮培养逆转了ACH-3P类器官由内向外的结构,使STB在类器官外层形成,从而反映胎盘组织。我们的生物打印方法适用于滋养层干细胞。我们展示了一种高通量、自动化且可调节的滋养层类器官模型,该模型能够在健康和疾病状态下可重复地模拟胎盘微环境。