Suppr超能文献

角质形成细胞行为的数值模拟:生化与力学框架的全面综述

Numerical Modelling of Keratinocyte Behaviour: A Comprehensive Review of Biochemical and Mechanical Frameworks.

作者信息

Rashid Sarjeel, Maiti Raman, Roy Anish

机构信息

Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.

出版信息

Cells. 2025 Sep 4;14(17):1382. doi: 10.3390/cells14171382.

Abstract

Keratinocytes are the primary cells of the epidermis layer in our skin. They play a crucial role in maintaining skin health, responding to injuries, and counteracting disease progression. Understanding their behaviour is essential for advancing wound healing therapies, improving outcomes in regenerative medicine, and developing numerical models that accurately mimic skin deformation. To create physically representative models, it is essential to evaluate the nuanced ways in which keratinocytes deform, interact, and respond to mechanical and biochemical signals. This has prompted researchers to investigate various computational methods that capture these dynamics effectively. This review summarises the main mathematical and biomechanical modelling techniques (with particular focus on the literature published since 2010). It includes reaction-diffusion frameworks, finite element analysis, viscoelastic models, stochastic simulations, and agent-based approaches. We also highlight how machine learning is being integrated to accelerate model calibration, improve image-based analyses, and enhance predictive simulations. While these models have significantly improved our understanding of keratinocyte function, many approaches rely on idealised assumptions. These may be two-dimensional unicellular analysis, simplistic material properties, or uncoupled analyses between mechanical and biochemical factors. We discuss the need for multiscale, integrative modelling frameworks that bridge these computational and experimental approaches. A more holistic representation of keratinocyte behaviour could enhance the development of personalised therapies, improve disease modelling, and refine bioengineered skin substitutes for clinical applications.

摘要

角质形成细胞是我们皮肤表皮层的主要细胞。它们在维持皮肤健康、应对损伤以及对抗疾病进展方面发挥着关键作用。了解它们的行为对于推进伤口愈合治疗、改善再生医学的治疗效果以及开发能够准确模拟皮肤变形的数值模型至关重要。为了创建具有物理代表性的模型,评估角质形成细胞变形、相互作用以及对机械和生化信号作出反应的细微方式至关重要。这促使研究人员研究各种能够有效捕捉这些动态的计算方法。本综述总结了主要的数学和生物力学建模技术(特别关注自2010年以来发表的文献)。它包括反应扩散框架、有限元分析、粘弹性模型、随机模拟和基于智能体的方法。我们还强调了机器学习如何被整合以加速模型校准、改进基于图像的分析以及增强预测模拟。虽然这些模型显著提高了我们对角质形成细胞功能的理解,但许多方法依赖于理想化假设。这些假设可能是二维单细胞分析、过于简单的材料特性,或者机械和生化因素之间的非耦合分析。我们讨论了建立连接这些计算和实验方法的多尺度、综合建模框架的必要性。对角质形成细胞行为更全面的描述可以促进个性化治疗的发展、改善疾病建模,并优化用于临床应用的生物工程皮肤替代物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e845/12428057/6bca055533a4/cells-14-01382-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验