Suppr超能文献

在NIH ChestX-Ray14数据集中用于多标签胸部X光异常检测的曼巴、Transformer和卷积神经网络(CNN)架构的比较分析

A Comparative Analysis of the Mamba, Transformer, and CNN Architectures for Multi-Label Chest X-Ray Anomaly Detection in the NIH ChestX-Ray14 Dataset.

作者信息

Yanar Erdem, Kutan Furkan, Ayturan Kubilay, Kutbay Uğurhan, Algın Oktay, Hardalaç Fırat, Ağıldere Ahmet Muhteşem

机构信息

Department of Healthcare Systems System Engineering, ASELSAN, 06200 Ankara, Turkey.

Department of Test and Verification Engineering, ASELSAN, 06200 Ankara, Turkey.

出版信息

Diagnostics (Basel). 2025 Sep 1;15(17):2215. doi: 10.3390/diagnostics15172215.

Abstract

Recent state-of-the-art advances in deep learning have significantly improved diagnostic accuracy in medical imaging, particularly in chest radiograph (CXR) analysis. Motivated by these developments, a comprehensive comparison was conducted to investigate how architectural choices affect performance of 14 deep learning models across Convolutional Neural Networks (CNNs), Transformer-based models, and Mamba-based State Space Models. These models were trained and evaluated under identical conditions on the NIH ChestX-ray14 dataset, a large-scale and widely used benchmark comprising 112,120 labeled CXR images with 14 thoracic disease categories. It was found that recent hybrid architectures-particularly ConvFormer, CaFormer, and EfficientNet-deliver superior performance in both common and rare pathologies. ConvFormer achieved the highest mean AUROC of 0.841 when averaged across all 14 thoracic disease classes, closely followed by EfficientNet and CaFormer. Notably, AUROC scores of 0.94 for hernia, 0.91 for cardiomegaly, and 0.88 for edema and effusion were achieved by the proposed models, surpassing previously reported benchmarks. These results not only highlight the continued strength of CNNs but also demonstrate the growing potential of Transformer-based architectures in medical image analysis. This work contributes to the literature by providing a unified, state-of-the-art benchmarking of diverse deep learning models, offering valuable guidance for researchers and practitioners developing clinically robust AI systems for radiology.

摘要

深度学习领域的最新技术进展显著提高了医学成像的诊断准确性,尤其是在胸部X光片(CXR)分析方面。受这些进展的推动,我们进行了一项全面比较,以研究架构选择如何影响14种深度学习模型在卷积神经网络(CNN)、基于Transformer的模型和基于曼巴的状态空间模型中的性能。这些模型在相同条件下在NIH ChestX-ray14数据集上进行训练和评估,该数据集是一个大规模且广泛使用的基准,包含112120张标记的CXR图像,涵盖14种胸部疾病类别。研究发现,最近的混合架构——特别是ConvFormer、CaFormer和EfficientNet——在常见和罕见病症中均表现出卓越性能。在所有14种胸部疾病类别上平均计算时,ConvFormer的平均AUROC最高,达到0.841,紧随其后的是EfficientNet和CaFormer。值得注意的是,所提出的模型在疝气方面的AUROC分数达到0.94,在心脏肥大方面为0.91,在水肿和积液方面为0.88,超过了先前报道的基准。这些结果不仅突出了CNN的持续优势,还展示了基于Transformer的架构在医学图像分析中日益增长的潜力。这项工作通过为各种深度学习模型提供统一的、最新的基准测试,为文献做出了贡献,为开发用于放射学的临床稳健人工智能系统的研究人员和从业者提供了有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a191/12428523/8409a62ea7e0/diagnostics-15-02215-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验