Suppr超能文献

基于注意力的显著图提高气胸分类的可解释性。

Attention-based Saliency Maps Improve Interpretability of Pneumothorax Classification.

作者信息

Wollek Alessandro, Graf Robert, Čečatka Saša, Fink Nicola, Willem Theresa, Sabel Bastian O, Lasser Tobias

机构信息

Munich Institute of Biomedical Engineering and Department of Informatics, Technical University of Munich, Boltzmannstr 11, Garching b., Munich 85748, Germany (A.W., R.G., T.L.); Department of Radiology, University Hospital LMU, Munich, Germany (S.Č., N.F., B.O.S.); and Munich School of Technology in Society, Technical University of Munich, Munich, Germany (T.W.).

出版信息

Radiol Artif Intell. 2022 Mar 1;5(2):e220187. doi: 10.1148/ryai.220187. eCollection 2023 Mar.

Abstract

PURPOSE

To investigate the chest radiograph classification performance of vision transformers (ViTs) and interpretability of attention-based saliency maps, using the example of pneumothorax classification.

MATERIALS AND METHODS

In this retrospective study, ViTs were fine-tuned for lung disease classification using four public datasets: CheXpert, Chest X-Ray 14, MIMIC CXR, and VinBigData. Saliency maps were generated using transformer multimodal explainability and gradient-weighted class activation mapping (GradCAM). Classification performance was evaluated on the Chest X-Ray 14, VinBigData, and Society for Imaging Informatics in Medicine-American College of Radiology (SIIM-ACR) Pneumothorax Segmentation datasets using the area under the receiver operating characteristic curve (AUC) analysis and compared with convolutional neural networks (CNNs). The explainability methods were evaluated with positive and negative perturbation, sensitivity-n, effective heat ratio, intra-architecture repeatability, and interarchitecture reproducibility. In the user study, three radiologists classified 160 chest radiographs with and without saliency maps for pneumothorax and rated their usefulness.

RESULTS

ViTs had comparable chest radiograph classification AUCs compared with state-of-the-art CNNs: 0.95 (95% CI: 0.94, 0.95) versus 0.83 (95%, CI 0.83, 0.84) on Chest X-Ray 14, 0.84 (95% CI: 0.77, 0.91) versus 0.83 (95% CI: 0.76, 0.90) on VinBigData, and 0.85 (95% CI: 0.85, 0.86) versus 0.87 (95% CI: 0.87, 0.88) on SIIM-ACR. Both saliency map methods unveiled a strong bias toward pneumothorax tubes in the models. Radiologists found 47% of the attention-based and 39% of the GradCAM saliency maps useful. The attention-based methods outperformed GradCAM on all metrics.

CONCLUSION

ViTs performed similarly to CNNs in chest radiograph classification, and their attention-based saliency maps were more useful to radiologists and outperformed GradCAM. Conventional Radiography, Thorax, Diagnosis, Supervised Learning, Convolutional Neural Network (CNN) © RSNA, 2023.

摘要

目的

以气胸分类为例,研究视觉Transformer(ViT)的胸部X线片分类性能以及基于注意力的显著性图的可解释性。

材料与方法

在这项回顾性研究中,使用四个公共数据集(CheXpert、胸部X线片14、MIMIC CXR和VinBigData)对ViT进行微调以用于肺病分类。使用Transformer多模态可解释性和梯度加权类激活映射(GradCAM)生成显著性图。在胸部X线片14、VinBigData和医学影像信息学会-美国放射学会(SIIM-ACR)气胸分割数据集上,使用受试者操作特征曲线下面积(AUC)分析评估分类性能,并与卷积神经网络(CNN)进行比较。通过正向和负向扰动、敏感度-n、有效热比、架构内重复性和架构间可重复性评估可解释性方法。在用户研究中,三名放射科医生对160张有或没有气胸显著性图的胸部X线片进行分类,并对其有用性进行评分。

结果

与最先进的CNN相比,ViT在胸部X线片分类中的AUC相当:在胸部X线片14上分别为0.95(95%CI:0.94,0.95)和0.83(95%CI:0.83,0.84);在VinBigData上分别为0.84(95%CI:0.77,0.91)和0.83(95%CI:0.76,0.90);在SIIM-ACR上分别为0.85(95%CI:0.85,0.86)和0.87(95%CI:0.87,0.88)。两种显著性图方法都揭示了模型对气胸导管有强烈的偏向性。放射科医生发现47%基于注意力的显著性图和39%的GradCAM显著性图有用。基于注意力的方法在所有指标上均优于GradCAM。

结论

ViT在胸部X线片分类中的表现与CNN相似,其基于注意力的显著性图对放射科医生更有用,且优于GradCAM。传统放射学、胸部、诊断、监督学习、卷积神经网络(CNN) ©RSNA,2023。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06a3/10077084/adf02aec2fde/ryai.220187.VA.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验