Zheng Jingyi, Zhou Yana, Sun Yan, Li Xiaonan
College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
Dalian Modern Agriculture Development Service Center, Dalian 116012, China.
Plants (Basel). 2025 Aug 27;14(17):2683. doi: 10.3390/plants14172683.
Clubroot disease, caused by , poses a serious threat to global crop production. Orphan genes (OGs), which are species or lineage-specific and lack detectable homologs in other taxa, have been implicated in various biotic stress responses. Here, we identified a novel -specific orphan gene, designated , that confers resistance to clubroot. Heterologous overexpression of in significantly enhanced resistance to . Transcriptomic profiling of -overexpressing lines highlighted the essential role of the phenylpropanoid biosynthesis pathway, showing upregulation of key lignin synthesis genes (including and ) and defense-related regulators ( and ). Weighted co-expression network analysis further corroborated the link between -mediated resistance and enhanced lignin deposition and cell wall reinforcement. Our findings establish as a -specific orphan gene that enhances clubroot resistance via phenylpropanoid pathway activation. These results highlight the potential of orphan genes as novel genetic resources for breeding clubroot-resistant varieties, offering a sustainable strategy to mitigate yield losses caused by this devastating disease.
根肿病由[病原体名称未给出]引起,对全球作物生产构成严重威胁。孤儿基因(OGs)是物种或谱系特异性的,在其他分类群中缺乏可检测的同源物,已被证明参与各种生物胁迫反应。在这里,我们鉴定了一个新的[物种名称未给出]特异性孤儿基因,命名为[基因名称未给出],它赋予对根肿病的抗性。在[受体物种名称未给出]中异源过表达[基因名称未给出]显著增强了对[病原体名称未给出]的抗性。过表达[基因名称未给出]的株系的转录组分析突出了苯丙烷生物合成途径的重要作用,显示关键木质素合成基因(包括[基因名称未给出]和[基因名称未给出])和防御相关调节因子([基因名称未给出]和[基因名称未给出])上调。加权共表达网络分析进一步证实了[基因名称未给出]介导的抗性与增强的木质素沉积和细胞壁强化之间的联系。我们的研究结果确定[基因名称未给出]为一个[物种名称未给出]特异性孤儿基因,它通过激活苯丙烷途径增强对根肿病的抗性。这些结果突出了孤儿基因作为培育抗根肿病[作物名称未给出]品种的新型遗传资源的潜力,提供了一种可持续的策略来减轻这种毁灭性疾病造成的产量损失。