Rodaitė Raminta, Kairytė Laura, Giedraitienė Agnė, Ružauskas Modestas, Šiugždinienė Rita, Čiapienė Ieva, Tatarūnas Vacis, Varnagiris Šarūnas, Milčius Darius
Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Breslaujos Str. 3, LT-44403 Kaunas, Lithuania.
Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, LT-53361 Akademija, Lithuania.
Molecules. 2025 Aug 28;30(17):3526. doi: 10.3390/molecules30173526.
The demand for antimicrobial and biocompatible materials in biomedical applications continues to grow, particularly in the context of wound care and textiles. This study explores the development of multifunctional coatings by applying magnesium (Mg) nanoparticles onto medical-grade cotton textiles using magnetron sputtering-a solvent-free and environmentally sustainable technique. A comprehensive material characterization confirmed the formation of Mg, MgO and Mg(OH)/MgH phases, along with generally consistent particle coverage and increased fiber surface roughness. The antibacterial testing revealed the effective inhibition of both Gram-positive and Gram-negative bacteria-except Additionally, the growth of the fungus and the microalgae spp. was reduced by over 80%. Importantly, a cytocompatibility evaluation using human umbilical vein endothelial cells (HUVECs) demonstrated not only non-toxicity but a significant increase in cell viability after 72 h, particularly in samples treated for 20 and 60 min, indicating a potential cytoprotective and proliferative effect. These findings highlight the dual functionality of plasma-sputtered Mg nanoparticle coatings, offering a promising strategy for the development of eco-friendly, antimicrobial and cell-supportive medical textiles.
生物医学应用中对抗菌和生物相容性材料的需求持续增长,尤其是在伤口护理和纺织品领域。本研究通过磁控溅射(一种无溶剂且环境可持续的技术)将镁(Mg)纳米颗粒应用于医用级棉纺织品,探索多功能涂层的开发。全面的材料表征证实了Mg、MgO和Mg(OH)/MgH相的形成,以及总体上一致的颗粒覆盖率和纤维表面粗糙度的增加。抗菌测试表明,除了[此处原文缺失具体菌种信息]外,对革兰氏阳性菌和革兰氏阴性菌均有有效抑制作用。此外,真菌[此处原文缺失具体菌种信息]和微藻[此处原文缺失具体种类信息] spp.的生长减少了80%以上。重要的是,使用人脐静脉内皮细胞(HUVECs)进行的细胞相容性评估不仅表明无毒,而且在72小时后细胞活力显著增加,特别是在处理20分钟和60分钟的样品中,表明具有潜在的细胞保护和增殖作用。这些发现突出了等离子体溅射Mg纳米颗粒涂层的双重功能,为开发环保、抗菌和细胞支持性医用纺织品提供了一种有前景的策略。