Huang Su-Mei, Sun Xu-Ling, Li Chia-Ching, Hwang Jiunn-Jer
Department of Health and Nutrition & Chemical Engineering, Army Academy, Taoyuan 320316, Taiwan.
Department of Cosmetic Science, Vanung University, Taoyuan 320313, Taiwan.
Polymers (Basel). 2025 Sep 5;17(17):2410. doi: 10.3390/polym17172410.
This study aims to address the poor extensibility, brittleness, and limited hydration stability of pure sodium alginate (SA) hydrogels, which hinder their use in flexible, skin-adherent applications such as facial masks, by developing bio-based composites incorporating five representative functional additives: xanthan gum, guar gum, hydroxyethyl cellulose (HEC), poly(ethylene glycol)-240/hexamethylene diisocyanate copolymer bis-decyl tetradeceth-20 ether (GT-700), and Laponite XLG. Composite hydrogels were prepared by blending 1.5 wt% SA with 0.3 wt% of each additive in aqueous humectant solution, followed by ionic crosslinking using 3% (/) CaCl solution. Physicochemical characterization included rotational viscometry, uniaxial tensile testing, ATR-FTIR spectroscopy, swelling ratio analysis, and pH measurement. Among them, the SA/XLG composite exhibited the most favorable performance, showing the highest viscosity, shear-thickening behavior, and markedly enhanced extensibility with an elongation at break of 14.8% (compared to 2.5% for neat SA). It also demonstrated a mean swelling ratio of 0.24 g/g and complete dissolution in water within one year. ATR-FTIR confirmed distinct non-covalent interactions between SA and XLG without covalent modification. The hydrogel also demonstrated excellent conformability to complex 3D surfaces, consistent hydration retention under centrifugal stress (+23.6% mass gain), and complete biodegradability in aqueous environments. Although its moderately alkaline pH (8.96) may require buffering for dermatological compatibility, its mechanical resilience and environmental responsiveness support its application as a sustainable, single-use skin-contact material. Notably, the SA/XLG composite hydrogel demonstrated compatibility with personalized fabrication strategies integrating 3D scanning and additive manufacturing, wherein facial topography is digitized and transformed into anatomically matched molds-highlighting its potential for customized cosmetic and biomedical applications.
本研究旨在通过开发包含五种代表性功能添加剂的生物基复合材料,解决纯海藻酸钠(SA)水凝胶的延展性差、脆性大以及水合稳定性有限的问题,这些问题阻碍了其在面膜等柔性、皮肤粘附性应用中的使用。这五种添加剂分别是黄原胶、瓜尔胶、羟乙基纤维素(HEC)、聚(乙二醇)-240/六亚甲基二异氰酸酯共聚物双癸基十四烷基醚(GT-700)和锂皂石XLG。在保湿水溶液中,将1.5 wt%的SA与0.3 wt%的每种添加剂混合,然后用3%(/)的CaCl₂溶液进行离子交联,制备复合水凝胶。物理化学表征包括旋转粘度测定、单轴拉伸试验、衰减全反射傅里叶变换红外光谱(ATR-FTIR)、溶胀率分析和pH测量。其中,SA/XLG复合材料表现出最优异的性能,具有最高的粘度、剪切增稠行为,并且延展性显著增强,断裂伸长率为14.8%(纯SA为2.5%)。它的平均溶胀率为0.24 g/g,并且在一年内可在水中完全溶解。ATR-FTIR证实了SA和XLG之间存在明显的非共价相互作用,且无共价修饰。该水凝胶还表现出对复杂三维表面的优异贴合性,在离心应力下能保持一致的水合作用(质量增加+23.6%),并且在水环境中完全可生物降解。尽管其适度的碱性pH值(8.96)可能需要进行缓冲以实现皮肤相容性,但其机械弹性和环境响应性支持其作为可持续的一次性皮肤接触材料的应用。值得注意的是,SA/XLG复合水凝胶与整合了三维扫描和增材制造的个性化制造策略具有兼容性,其中面部地形被数字化并转化为解剖学匹配的模具,突出了其在定制化妆品和生物医学应用中的潜力。