Zhang Haoru, Zhao Songqing, Xia Yuhong, Zhang Xinyue, Zhou Lulu, Yang Zhenqing
College of Science, China University of Petroleum, Beijing 102249, China.
China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
Materials (Basel). 2025 Sep 8;18(17):4219. doi: 10.3390/ma18174219.
To study the effect of strain engineering on the thermoelectric properties of SnSe, we combined first-principles calculation and Boltzmann transport theory to study the effect of -4% to 4% strain on SnSe thermoelectric properties. Compressive strain enhances the maximum power factor () of p-type SnSe from 2.3 to 4.3 mW·m·K. Specifically, under a -3% compressive strain, the thermoelectric figure of merit () experiences a 50% enhancement, increasing from 0.18 to 0.27. Conversely, for n-type, tensile strain leads to a 26% rise in the ₘₐₓ, from 53.6 to 67.6 mW·m·K. Notably, the 4% tensile strain increased the value of n-type SnSe by 123% from 0.66 to 1.47. Importantly, tensile strain effectively reduces lattice thermal conductivity through enhanced phonon scattering, synergistically improving with the enhanced power factor. The results show that strain can effectively improve the thermoelectric properties of SnSe, and that n-type SnSe has great potential in thermoelectric materials.
为了研究应变工程对SnSe热电性能的影响,我们结合第一性原理计算和玻尔兹曼输运理论,研究了-4%至4%的应变对SnSe热电性能的影响。压缩应变将p型SnSe的最大功率因数()从2.3提高到4.3 mW·m·K。具体而言,在-3%的压缩应变下,热电优值()提高了50%,从0.18增加到0.27。相反,对于n型,拉伸应变导致ₘₐₓ提高了26%,从53.6提高到67.6 mW·m·K。值得注意的是,4%的拉伸应变使n型SnSe的 值从0.66提高了123%,达到1.47。重要的是,拉伸应变通过增强声子散射有效地降低了晶格热导率,与增强的功率因数协同提高了。结果表明,应变可以有效地改善SnSe的热电性能,并且n型SnSe在热电材料方面具有巨大潜力。