Sattar Muhammad Atif, Al Bouzieh Najwa, Benkraouda Maamar, Amrane Noureddine
Physics Department, College of Science, United Arab Emirates University (UAEU), 15551, Al Ain, UAE.
National Water and Energy Center (NWEC), United Arab Emirates University (UAEU), 15551, Al Ain, UAE.
Beilstein J Nanotechnol. 2021 Oct 5;12:1101-1114. doi: 10.3762/bjnano.12.82. eCollection 2021.
Tin selenide (SnSe) has thermoelectric (TE) and photovoltaic (PV) applications due to its exceptional advantages, such as the remarkable figure of merit ( ≈ 2.6 at 923 K) and excellent optoelectronic properties. In addition, SnSe is nontoxic, inexpensive, and relatively abundant. These aspects make SnSe of great practical importance for the next generation of thermoelectric devices. Here, we report structural, optoelectronic, thermodynamic, and thermoelectric properties of the recently experimentally identified binary phase of tin monoselenide (π-SnSe) by using the density functional theory (DFT). Our DFT calculations reveal that π-SnSe features an optical bandgap of 1.41 eV and has an exceptionally large lattice constant (12.2 Å, 23). We report several thermodynamic, optical, and thermoelectric properties of this π-SnSe phase for the first time. Our finding shows that the π-SnSe alloy is exceptionally promising for the next generation of photovoltaic and thermoelectric devices at room and high temperatures.
硒化锡(SnSe)因其卓越的优势,如显著的品质因数(在923 K时约为2.6)和优异的光电性能,而具有热电(TE)和光伏(PV)应用。此外,SnSe无毒、价格低廉且相对丰富。这些方面使得SnSe对于下一代热电器件具有重要的实际意义。在此,我们通过使用密度泛函理论(DFT)报告了最近通过实验确定的单硒化锡二元相(π-SnSe)的结构、光电、热力学和热电性质。我们的DFT计算表明,π-SnSe的光学带隙为1.41 eV,并且具有异常大的晶格常数(12.2 Å,23)。我们首次报告了该π-SnSe相的几种热力学、光学和热电性质。我们的研究结果表明,π-SnSe合金在室温和高温下对于下一代光伏和热电器件具有极大的应用前景。