Suppr超能文献

Spectral and Geometrical Guidelines for Low-Concentration Oil-in-Seawater Emulsion Detection Based on Monte Carlo Modeling.

作者信息

Lednicka Barbara, Otremba Zbigniew

机构信息

Department of Physics, Gdynia Maritime University, 81-225 Gdynia, Poland.

出版信息

Sensors (Basel). 2025 Aug 24;25(17):5267. doi: 10.3390/s25175267.

Abstract

This paper is a result of the search for design assumptions for a sensor to detect oil dispersed in the sea waters (oil-in-water emulsions). Our approach is based on analyzing changes in the underwater solar radiance (L) field caused by the presence of oil droplets in the water column. This method would enable the sensor to respond to the presence of oil contaminants dispersed in the surrounding environment, even if they are not located directly at the measurement point. This study draws on both literature sources and the results of current numerical modeling of the spread of solar light in the water column to account for both downward and upward irradiance (Es). The core principle of the analysis involves simulating the paths of a large number of virtual solar photons in a seawater model defined by spatially distributed Inherent Optical Properties (IOPs). The IOPs data were taken from the literature and pertain to the waters of the southern Baltic Sea. The optical properties of the oil used in the model correspond to crude oil extracted from the Baltic shelf. The obtained results were compared with previously published spectral analyses of an analogous polluted sea model, considering vertical downward radiance, vertical upward radiance, and downward and upward irradiance. It was found that the optimal wavelength ratio of 555/412, identified for these quantities, is also applicable to scalar irradiance. The findings indicate that the most effective way to determine this index is by measuring it using a sensor with its window oriented in the direction of upward-traveling light.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c5/12431110/58d89eaff742/sensors-25-05267-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验