Suppr超能文献

数字心血管孪生体、人工智能代理与传感器数据:从系统架构到主动心脏健康的叙述性综述

Digital Cardiovascular Twins, AI Agents, and Sensor Data: A Narrative Review from System Architecture to Proactive Heart Health.

作者信息

Tasmurzayev Nurdaulet, Amangeldy Bibars, Imanbek Baglan, Baigarayeva Zhanel, Imankulov Timur, Dikhanbayeva Gulmira, Amangeldi Inzhu, Sharipova Symbat

机构信息

Faculty of Information Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan.

LLP "DigitAlem", Almaty 050042, Kazakhstan.

出版信息

Sensors (Basel). 2025 Aug 24;25(17):5272. doi: 10.3390/s25175272.

Abstract

Cardiovascular disease remains the world's leading cause of mortality, yet everyday care still relies on episodic, symptom-driven interventions that detect ischemia, arrhythmias, and remodeling only after tissue damage has begun, limiting the effectiveness of therapy. A narrative review synthesized 183 studies published between 2016 and 2025 that were located through PubMed, MDPI, Scopus, IEEE Xplore, and Web of Science. This review examines CVD diagnostics using innovative technologies such as digital cardiovascular twins, which involve the collection of data from wearable IoT devices (electrocardiography (ECG), photoplethysmography (PPG), and mechanocardiography), clinical records, laboratory biomarkers, and genetic markers, as well as their integration with artificial intelligence (AI), including machine learning and deep learning, graph and transformer networks for interpreting multi-dimensional data streams and creating prognostic models, as well as generative AI, medical large language models (LLMs), and autonomous agents for decision support, personalized alerts, and treatment scenario modeling, and with cloud and edge computing for data processing. This multi-layered architecture enables the detection of silent pathologies long before clinical manifestations, transforming continuous observations into actionable recommendations and shifting cardiology from reactive treatment to predictive and preventive care. Evidence converges on four layers: sensors streaming multimodal clinical and environmental data; hybrid analytics that integrate hemodynamic models with deep-, graph- and transformer learning while Bayesian and Kalman filters manage uncertainty; decision support delivered by domain-tuned medical LLMs and autonomous agents; and prospective simulations that trial pacing or pharmacotherapy before bedside use, closing the prediction-intervention loop. This stack flags silent pathology weeks in advance and steers proactive personalized prevention. It also lays the groundwork for software-as-a-medical-device ecosystems and new regulatory guidance for trustworthy AI-enabled cardiovascular care.

摘要

心血管疾病仍然是全球首要死因,但日常护理仍依赖于基于症状的间歇性干预措施,这些措施只有在组织损伤开始后才能检测到缺血、心律失常和重塑,从而限制了治疗效果。一项叙述性综述综合了2016年至2025年间发表的183项研究,这些研究通过PubMed、MDPI、Scopus、IEEE Xplore和Web of Science检索获得。本综述探讨了使用数字心血管双胞胎等创新技术进行心血管疾病诊断的情况,这些技术涉及从可穿戴物联网设备(心电图(ECG)、光电容积脉搏波描记法(PPG)和机械心动图)、临床记录、实验室生物标志物和基因标志物收集数据,以及将这些数据与人工智能(AI)集成,包括机器学习和深度学习、用于解释多维数据流和创建预后模型的图网络和变压器网络,以及用于决策支持、个性化警报和治疗方案建模的生成式AI、医学大语言模型(LLMs)和自主智能体,还涉及利用云计算和边缘计算进行数据处理。这种多层架构能够在临床表现出现之前很久就检测到无症状病变,将连续观察转化为可操作的建议,并将心脏病学从反应性治疗转变为预测性和预防性护理。证据集中在四个层面:流式传输多模态临床和环境数据的传感器;将血流动力学模型与深度、图和变压器学习相结合,同时贝叶斯滤波器和卡尔曼滤波器管理不确定性的混合分析;由领域调整的医学大语言模型和自主智能体提供的决策支持;以及在床边使用前对起搏或药物治疗进行试验的前瞻性模拟,从而闭合预测-干预循环。这一架构能够提前数周标记无症状病变,并引导积极的个性化预防。它还为软件即医疗设备生态系统以及可信的人工智能支持的心血管护理新监管指南奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/853b/12431230/c2e42ebb7bf4/sensors-25-05272-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验