Suppr超能文献

基于大语言模型的高血糖预测以及从可穿戴设备和饮食中发现行为治疗途径

LLM-Powered Prediction of Hyperglycemia and Discovery of Behavioral Treatment Pathways from Wearables and Diet.

作者信息

Mamun Abdullah, Arefeen Asiful, Racette Susan B, Sears Dorothy D, Whisner Corrie M, Buman Matthew P, Ghasemzadeh Hassan

机构信息

College of Health Solutions, Arizona State University, Phoenix, AZ 85054, USA.

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA.

出版信息

Sensors (Basel). 2025 Aug 31;25(17):5372. doi: 10.3390/s25175372.

Abstract

Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after consuming a meal, is a critical indicator of progression toward type 2 diabetes in people with prediabetes and in healthy individuals. A key metric for understanding blood glucose dynamics after eating is the postprandial Area Under the Curve (AUC). Predicting postprandial AUC in advance based on a person's lifestyle factors, such as diet and physical activity level, and explaining the factors that affect postprandial blood glucose could allow an individual to adjust their behavioral choices accordingly to maintain normal glucose levels. In this work, we develop an explainable machine learning solution, GlucoLens, that takes sensor-driven inputs and utilizes advanced data processing, large language models, and trainable machine learning models to estimate postprandial AUC and predict hyperglycemia from diet, physical activity, and recent glucose patterns. We use data obtained using wearables in a five-week clinical trial of 10 adults who worked full-time to develop and evaluate the proposed computational model that integrates wearable sensing, multimodal data, and machine learning. Our machine learning model takes multimodal data from wearable activity and glucose monitoring sensors, along with food and work logs, and provides an interpretable prediction of the postprandial glucose patterns. GlucoLens achieves a normalized root mean squared error (NRMSE) of 0.123 in its best configuration. On average, the proposed technology provides a 16% better predictive performance compared to the comparison models. Additionally, our technique predicts hyperglycemia with an accuracy of 79% and an F1 score of 0.749 and recommends different treatment options to help avoid hyperglycemia through diverse counterfactual explanations. With systematic experiments and discussion supported by established prior research, we show that our method is generalizable and consistent with clinical understanding.

摘要

餐后高血糖表现为进食后血糖水平超出正常范围,是糖尿病前期患者和健康个体向2型糖尿病进展的关键指标。理解进食后血糖动态变化的一个关键指标是餐后曲线下面积(AUC)。根据一个人的生活方式因素(如饮食和身体活动水平)提前预测餐后AUC,并解释影响餐后血糖的因素,可以让个体相应地调整其行为选择,以维持正常血糖水平。在这项工作中,我们开发了一种可解释的机器学习解决方案GlucoLens,它采用传感器驱动的输入,并利用先进的数据处理、大语言模型和可训练的机器学习模型来估计餐后AUC,并根据饮食、身体活动和近期血糖模式预测高血糖。我们使用在一项为期五周的临床试验中,10名全职工作的成年人使用可穿戴设备获得的数据,来开发和评估所提出的整合可穿戴传感、多模态数据和机器学习的计算模型。我们的机器学习模型从可穿戴活动和血糖监测传感器以及食物和工作记录中获取多模态数据,并提供餐后血糖模式的可解释预测。GlucoLens在其最佳配置下实现了0.123的归一化均方根误差(NRMSE)。平均而言,与比较模型相比,所提出的技术提供了16%更好的预测性能。此外,我们的技术预测高血糖的准确率为79%,F1分数为0.749,并通过不同的反事实解释推荐不同的治疗方案,以帮助避免高血糖。通过已有的先前研究支持的系统实验和讨论,我们表明我们的方法具有通用性,并且与临床理解一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1738/12431146/d05d42fc1537/sensors-25-05372-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验