Suppr超能文献

基于实车测试事故场景的智能汽车接管安全性研究

Research on Takeover Safety of Intelligent Vehicles Based on Accident Scenarios in Real-Vehicle Testing.

作者信息

Li Pingfei, Zhou Meiling, Xu Chang, Li He, Hu Wenhao, Tan Zhengping, Xiao Lingyun, Mou Xiaojun, Feng Hao

机构信息

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

School of Automobile and Transportation, Xihua University, Chengdu 610039, China.

出版信息

Sensors (Basel). 2025 Sep 7;25(17):5589. doi: 10.3390/s25175589.

Abstract

With the increasing emergence of intelligent vehicles, novel accident patterns have gradually emerged. In human-machine cooperative driving (HMCD) states, despite driving automation systems being capable of controlling lateral and longitudinal vehicle motions over extended periods, functional limitations persist in specific scenarios due to insufficient expected functionalities. When combined with risk factors, such as driver distraction, these limitations significantly elevate accident risks. This study investigated takeover safety through real vehicle testing in two typical accident scenarios: large-curvature curves and static obstacles. The key findings include the following: (1) in scenarios involving large curvature curves and static obstacles, vehicles are prone to lane departure and missed target detection, which are typical dangerous scenarios; (2) during the human-machine cooperative driving phase, the design of the driving automation system should focus on enhancing driver engagement in driving tasks, while in the autonomous driving phase, the vehicle's early warning capabilities should be strengthened; (3) the takeover request for longitudinal control requires at least 4.12 s of driver reaction time, while the takeover request for lateral control requires at least 1.87 s. This study provides important theoretical and practical references for safety in designing assisted driving systems and the testing of hazardous scenarios.

摘要

随着智能车辆的日益涌现,新型事故模式逐渐出现。在人机协同驾驶(HMCD)状态下,尽管驾驶自动化系统能够在较长时间内控制车辆的横向和纵向运动,但由于预期功能不足,在特定场景中仍存在功能限制。当与诸如驾驶员分心等风险因素相结合时,这些限制会显著提高事故风险。本研究通过在两种典型事故场景(大曲率弯道和静态障碍物)下的实车测试来研究接管安全性。主要研究结果如下:(1)在涉及大曲率弯道和静态障碍物的场景中,车辆容易发生车道偏离和目标检测遗漏,这些都是典型的危险场景;(2)在人机协同驾驶阶段,驾驶自动化系统的设计应侧重于增强驾驶员对驾驶任务的参与度,而在自动驾驶阶段,则应加强车辆的预警能力;(3)纵向控制的接管请求至少需要驾驶员4.12秒的反应时间,而横向控制的接管请求至少需要1.87秒。本研究为辅助驾驶系统设计中的安全性以及危险场景测试提供了重要的理论和实践参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ade9/12430937/0cf2707c553b/sensors-25-05589-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验