Pulik Łukasz, Czech Paweł, Kaliszewska Jadwiga, Mulewicz Bartłomiej, Pykosz Maciej, Wiszniewska Joanna, Łęgosz Paweł
Department of Orthopedics and Traumatology, Medical University of Warsaw, Lindley 4 Str., 02-005 Warsaw, Poland.
Pentacomp Systemy Informatyczne S.A., Aleje Jerozolimskie 179 Str., 02-222 Warsaw, Poland.
J Clin Med. 2025 Sep 8;14(17):6332. doi: 10.3390/jcm14176332.
: Developmental dysplasia of the hip (DDH), if not treated, can lead to osteoarthritis and disability. Ultrasound (US) is a primary screening method for the detection of DDH, but its interpretation remains highly operator-dependent. We propose a supervised machine learning (ML) image segmentation model for the automated recognition of anatomical structures in hip US images. : We conducted a retrospective observational analysis based on a dataset of 10,767 hip US images from 311 patients. All images were annotated for eight key structures according to the Graf method and split into training (75.0%), validation (9.5%), and test (15.5%) sets. Model performance was assessed using the Intersection over Union (IoU) and Dice Similarity Coefficient (DSC). : The best-performing model was based on the SegNeXt architecture with an MSCAN_L backbone. The model achieved high segmentation accuracy (IoU; DSC) for chondro-osseous border (0.632; 0.774), femoral head (0.916; 0.956), labrum (0.625; 0.769), cartilaginous (0.672; 0.804), and bony roof (0.725; 0.841). The average Euclidean distance for point-based landmarks (bony rim and lower limb) was 4.8 and 4.5 pixels, respectively, and the baseline deflection angle was 1.7 degrees. : This ML-based approach demonstrates promising accuracy and may enhance the reliability and accessibility of US-based DDH screening. Future applications could integrate real-time angle measurement and automated classification to support clinical decision-making.
发育性髋关节发育不良(DDH)若不治疗,可导致骨关节炎和残疾。超声(US)是检测DDH的主要筛查方法,但其解读仍高度依赖操作人员。我们提出了一种监督式机器学习(ML)图像分割模型,用于自动识别髋关节超声图像中的解剖结构。
我们基于311例患者的10767张髋关节超声图像数据集进行了回顾性观察分析。所有图像均根据格拉夫方法对八个关键结构进行标注,并分为训练集(75.0%)、验证集(9.5%)和测试集(15.5%)。使用交并比(IoU)和骰子相似系数(DSC)评估模型性能。
性能最佳的模型基于具有MSCAN_L主干的SegNeXt架构。该模型在软骨-骨边界(0.632;0.774)、股骨头(0.916;0.956)、盂唇(0.625;0.769)、软骨(0.672;0.804)和骨顶(0.725;0.841)的分割精度较高。基于点的地标(骨边缘和下肢)的平均欧几里得距离分别为4.8像素和4.5像素,基线偏转角为1.7度。
这种基于ML的方法显示出有前景的准确性,可能会提高基于超声的DDH筛查的可靠性和可及性。未来的应用可以整合实时角度测量和自动分类,以支持临床决策。