Suppr超能文献

基于深度学习的MRI中央软骨肿瘤自动分割

Deep learning for automated segmentation of central cartilage tumors on MRI.

作者信息

Gitto Salvatore, Corti Anna, van Langevelde Kirsten, Navas Cañete Ana, Cincotta Antonino, Messina Carmelo, Albano Domenico, Vignaga Carlotta, Ferrari Laura, Mainardi Luca, Corino Valentina D A, Sconfienza Luca Maria

机构信息

Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.

IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.

出版信息

Eur Radiol Exp. 2025 Sep 12;9(1):91. doi: 10.1186/s41747-025-00633-7.

Abstract

BACKGROUND

Automated segmentation methods may potentially increase the reliability and applicability of radiomics in skeletal oncology. Our aim was to propose a deep learning-based method for automated segmentation of atypical cartilaginous tumor (ACT) and grade II chondrosarcoma (CS2) of long bones on magnetic resonance imaging (MRI).

MATERIALS AND METHODS

This institutional review board-approved retrospective study included 164 patients with surgically treated and histology-proven cartilaginous tumors at two tertiary bone tumor centers. The first cohort consisted of 99 MRI scans from center 1 (79 ACT, 20 CS2). The second cohort consisted of 65 MRI scans from center 2 (45 ACT, 20 CS2). Supervised Edge-Attention Guidance segmentation Network (SEAGNET) architecture was employed for automated image segmentation on T1-weighted images, using manual segmentations drawn by musculoskeletal radiologists as the ground truth. In the first cohort, a total of 1,037 slices containing the tumor out of 99 patients were split into 70% training, 15% validation, and 15% internal test sets, respectively, and used for model tuning. The second cohort was used for independent external testing.

RESULTS

In the first cohort, Dice Score (DS) and Intersection over Union (IoU) per patient were 0.782 ± 0.148 and 0.663 ± 0.175, and 0.748 ± 0.191 and 0.630 ± 0.210 in the validation and internal test sets, respectively. DS and IoU per slice were 0.742 ± 0.273 and 0.646 ± 0.266, and 0.752 ± 0.256 and 0.656 ± 0.261 in the validation and internal test sets, respectively. In the independent external test dataset, the model achieved DS of 0.828 ± 0.175 and IoU of 0.706 ± 0.180.

CONCLUSION

Deep learning proved excellent for automated segmentation of central cartilage tumors on MRI.

RELEVANCE STATEMENT

A deep learning model based on SEAGNET architecture achieved excellent performance for automated segmentation of cartilage tumors of long bones on MRI and may be beneficial, given the increasing detection rate of these lesions in clinical practice.

KEY POINTS

Automated segmentation may potentially increase the reliability and applicability of radiomics-based models. A deep learning architecture was proposed for automated segmentation of appendicular cartilage tumors on MRI. Deep learning proved excellent with a mean Dice Score of 0.828 in the external test cohort.

摘要

背景

自动分割方法可能会提高放射组学在骨骼肿瘤学中的可靠性和适用性。我们的目的是提出一种基于深度学习的方法,用于在磁共振成像(MRI)上对长骨的非典型软骨肿瘤(ACT)和II级软骨肉瘤(CS2)进行自动分割。

材料与方法

这项经机构审查委员会批准的回顾性研究纳入了两个三级骨肿瘤中心164例接受手术治疗且经组织学证实的软骨肿瘤患者。第一个队列包括来自中心1的99例MRI扫描(79例ACT,20例CS2)。第二个队列包括来自中心2的65例MRI扫描(45例ACT,20例CS2)。采用监督边缘注意力引导分割网络(SEAGNET)架构在T1加权图像上进行自动图像分割,将肌肉骨骼放射科医生绘制的手动分割作为真实标准。在第一个队列中,99例患者中总共1037个包含肿瘤的切片分别被分为70%训练集、15%验证集和15%内部测试集,用于模型调整。第二个队列用于独立的外部测试。

结果

在第一个队列中,验证集和内部测试集的患者层面的骰子系数(DS)和交并比(IoU)分别为0.782±0.148和0.663±0.175,以及0.748±0.191和0.630±0.210。切片层面的DS和IoU在验证集和内部测试集中分别为0.742±0.273和0.646±0.266,以及0.752±0.256和0.656±0.261。在独立的外部测试数据集中,该模型的DS为0.828±0.175,IoU为0.706±0.180。

结论

深度学习在MRI上对中央软骨肿瘤的自动分割方面表现出色。

相关性声明

基于SEAGNET架构的深度学习模型在MRI上对长骨软骨肿瘤的自动分割方面表现出色,鉴于这些病变在临床实践中的检出率不断增加,可能会有所帮助。

关键点

自动分割可能会提高基于放射组学模型的可靠性和适用性。提出了一种深度学习架构用于MRI上附属软骨肿瘤的自动分割。深度学习在外部测试队列中表现出色,平均骰子系数为0.828。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec36/12431992/b6ff5048b07e/41747_2025_633_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验