Suppr超能文献

评估肥胖的人体测量指标以早期检测骨关节炎:重点关注体脂百分比和相对脂肪量。

Evaluating anthropometric indices of obesity for early osteoarthritis detection: focus on body fat percentage and relative fat mass.

作者信息

Qi Zhengrong, Cao Ruiqi, Yu Haomiao, Li Zhiyao, Li Qiang, Yi Zuling, Ma Lifeng, Yang Yan

机构信息

Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.

Department of Endocrinology, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.

出版信息

Clin Rheumatol. 2025 Sep 13. doi: 10.1007/s10067-025-07604-8.

Abstract

OBJECTIVE

Osteoarthritis is a prevalent joint disorder with a significant global burden. Identifying individuals at risk for osteoarthritis is essential, and obesity indices may be the key to early detection. This study aimed to explore the relationships between anthropometric indices of obesity and osteoarthritis and to assess their predictive abilities.

METHODS

This cross-sectional study included 54,041 participants aged 20 years or older from NHANES cycles spanning 1999 to 2023. Anthropometric indices of obesity included body mass index (BMI), waist circumference (WC), waist-to-height ratio (WHtR), weight-adjusted waist index (WWI), body roundness index (BRI), body fat percentage (BFP), relative fat mass (RFM), and conicity index (CI). Multivariate logistic regression and receiver operating characteristic curves were conducted to evaluate the associations and predictive capacities of these indices for osteoarthritis.

RESULTS

BMI, WC, WHtR, WWI, BRI, BFP, RFM, and CI were independently positively associated with osteoarthritis risk. RFM (OR = 1.662, 95% CI 1.571 ~ 1.757, P < 0.001) and BFP (OR = 1.555, 95% CI 1.494 ~ 1.617, P < 0.001) showed the strongest associations. The AUCs for the indices ranged from 0.581 to 0.706. BFP had the largest AUC (0.706, 95% CI 0.700 ~ 0.712), with an optimal cut-off of 35.922 (sensitivity, 71.292%; specificity, 59.258%), followed by WWI (AUC = 0.660, 95% CI 0.653 ~ 0.667), CI (AUC = 0.647, 95% CI 0.640 ~ 0.654), and RFM (AUC = 0.639, 95% CI 0.632 ~ 0.646).

CONCLUSION

BFP and RFM emerged as valuable tools for early osteoarthritis identification. Key Points • Anthropometric indices of obesity are positively associated with osteoarthritis and can serve as predictors of its risk. • Relative fat mass (RFM) demonstrates the strongest association with osteoarthritis risk. • Body fat percentage (BFP) exhibits the strongest predictive ability for osteoarthritis. • BFP and RFM are recommended for early osteoarthritis identification.

摘要

目的

骨关节炎是一种常见的关节疾病,在全球造成重大负担。识别骨关节炎风险个体至关重要,肥胖指数可能是早期检测的关键。本研究旨在探讨肥胖人体测量指数与骨关节炎之间的关系,并评估其预测能力。

方法

这项横断面研究纳入了1999年至2023年美国国家健康与营养检查调查(NHANES)中54041名20岁及以上的参与者。肥胖人体测量指数包括体重指数(BMI)、腰围(WC)、腰高比(WHtR)、体重调整腰围指数(WWI)、身体圆润指数(BRI)、体脂百分比(BFP)、相对脂肪量(RFM)和锥度指数(CI)。采用多因素逻辑回归和受试者工作特征曲线来评估这些指数与骨关节炎的关联及预测能力。

结果

BMI、WC、WHtR、WWI、BRI、BFP、RFM和CI均与骨关节炎风险呈独立正相关。RFM(比值比[OR]=1.662,95%置信区间[CI]1.571~-1.757,P<0.001)和BFP(OR=1.555,95%CI1.494~1.617,P<0.001)显示出最强的关联。这些指数的曲线下面积(AUC)范围为0.581至0.706。BFP的AUC最大(0.706,95%CI0.700~0.712),最佳截断值为35.922(灵敏度为71.292%;特异度为59.258%),其次是WWI(AUC=0.660,95%CI0.653~0.667)、CI(AUC=0.647,95%CI0.640~0.654)和RFM(AUC=0.639,95%CI0.632~0.646)。

结论

BFP和RFM是早期识别骨关节炎的有价值工具。要点•肥胖人体测量指数与骨关节炎呈正相关,可作为其风险预测指标。•相对脂肪量(RFM)与骨关节炎风险的关联最强。•体脂百分比(BFP)对骨关节炎的预测能力最强。•推荐使用BFP和RFM进行骨关节炎早期识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验