Fan Jiangtao, Liu Yihao, Wang Linxiang, Gao Ming, Cheng Zheng, Hu Zhanggui
College of Material Sciene and Engineering, Hefei University of Technology, Hefei 230009, China; Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Material Sciene and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Material Sciene and Engineering, Tianjin University of Technology, Tianjin 300384, China.
J Colloid Interface Sci. 2026 Jan 15;702(Pt 2):138988. doi: 10.1016/j.jcis.2025.138988. Epub 2025 Sep 11.
Dielectric ceramic capacitors show exceptional promise for applications in electrical and electronic equipment, but the parallel attainment of a high recoverable energy density (W)/efficiency (η) and superior stability poses a significant barrier for the practical application of pulse power capacitors. Herein, we report a novel, lead-free, quasi-linear, high-entropy (CaBiNa)(TiHfAlTa)O (CBNTHATx, x = 0, 0.15, 0.2, 0.25, and 0.3) ceramic fabricated by entropy tuning. Local polarity fluctuations and microstructural evolution were manipulated by designing complex high-entropy matrices to induce polar nanoregions (PNRs), local structural heterogeneity, and highly stable local structures, which facilitate a dynamic polarization response and high polarization. Consequently, the CBNTHAT0.25 ceramic can deliver a large recoverable energy density (W ∼ 7.12 J cm), concurrent with an ultrahigh energy storage efficiency (η ∼ 94.8 %) and hardness (H ∼ 8.11 GPa), as well as superior temperature/frequency stabilities and excellent discharging properties (power density P approximately 241.71 MW cm and discharge speed t approximately 22.93 ns), surpassing the comprehensive energy storage performance of previously reported linear CaTiO-based systems. This study emphasizes the feasibility of high-entropy strategies for quasi-linear dielectric ceramics, heralding promising advances in ceramic capacitors with integrated energy storage performance.
介电陶瓷电容器在电气和电子设备应用中展现出卓越的前景,但要同时实现高可恢复能量密度(W)/效率(η)以及卓越的稳定性,这对脉冲功率电容器的实际应用构成了重大障碍。在此,我们报道了一种通过熵调谐制备的新型无铅准线性高熵(CaBiNa)(TiHfAlTa)O(CBNTHATx,x = 0、0.15、0.2、0.25和0.3)陶瓷。通过设计复杂的高熵基体来操纵局部极性波动和微观结构演变,以诱导极性纳米区域(PNR)、局部结构不均匀性和高度稳定的局部结构,这有利于动态极化响应和高极化。因此,CBNTHAT0.25陶瓷能够提供大的可恢复能量密度(W ∼ 7.12 J cm),同时具备超高的能量存储效率(η ∼ 94.8 %)和硬度(H ∼ 8.11 GPa),以及卓越的温度/频率稳定性和优异的放电性能(功率密度P约为241.71 MW cm,放电速度t约为22.93 ns),超过了先前报道的基于CaTiO的线性体系的综合储能性能。本研究强调了高熵策略用于准线性介电陶瓷的可行性,预示着在具有集成储能性能的陶瓷电容器方面将取得有前景的进展。