Zhou Shiyu, Zhou Yucheng, Li Linhai, Fan Zhenhao, Yue Wenfeng, Fu Zhengqian, Chen Xuefeng, Xu Baixiang, Hu Tengfei, Wang Dawei, Yang Tongqing
Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, China.
Mechanics of Functional Materials Division, Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany.
Nat Commun. 2025 Sep 26;16(1):8456. doi: 10.1038/s41467-025-63173-z.
The development of dielectric ceramics that simultaneously achieve high energy density and ultra-broad temperature stability remains a fundamental challenge for advanced electrostatic capacitors. Here, we report a high-entropy engineering strategy that transforms conventional relaxor ferroelectric BT-Bi(MgZr)O into entropy-stabilized BT-H through a dual-phase cationic disorder modulation. By maximizing configurational entropy, this approach induces atomic-scale lattice heterogeneity with reduced size of polar units, and establishes temperature-adaptive multiphase coexistence structure, effectively decoupling polarization configuration from thermal fluctuations. Consequently, the optimized BT-H ceramics exhibit extraordinary recoverable energy density (W) of 8.9 J cm, near ideal conversion efficiency (η) of ~ 97.8 % and superior temperature stability of ΔW ~±9 % and Δη ~ ±4.8% over a ultrawide operational range (-85-220 °C). This work validates the entropy-mediated cocktail effect, demonstrating that leveraging high-entropy materials to design capacitors with superior integrated energy storage performance is an advanced and viable strategy.
同时实现高能量密度和超宽温度稳定性的介电陶瓷的开发仍然是先进静电电容器面临的一项基本挑战。在此,我们报告了一种高熵工程策略,该策略通过双相阳离子无序调制将传统弛豫铁电体BT-Bi(MgZr)O转变为熵稳定的BT-H。通过最大化组态熵,这种方法诱导出具有减小的极性单元尺寸的原子尺度晶格不均匀性,并建立温度适应性多相共存结构,有效地将极化构型与热涨落解耦。因此,优化后的BT-H陶瓷在超宽工作范围(-85至220°C)内表现出8.9 J cm的非凡可恢复能量密度(W)、接近97.8%的理想转换效率(η)以及ΔW约±9%和Δη约±4.8%的卓越温度稳定性。这项工作验证了熵介导的混合效应,表明利用高熵材料设计具有卓越综合储能性能的电容器是一种先进且可行的策略。