Suppr超能文献

用于子痫前期风险预测中左心室射血时间(LVET)监测的声学心动图(ACG)

Acoustic Cardiography (ACG) for Left Ventricular Ejection Time (LVET) Monitoring in Preeclampsia Risk Prediction.

作者信息

Tang Chunping, Zhang Xinxin, Wang Miao, Xiong Yiyuan, Zhu Yingxia, Huang Qiong, Zhou Ningtian

机构信息

Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.

Department of Obstetrics, The Affiliated Kezhou People's Hospital with Nanjing Medical University, Kezhou, China.

出版信息

Clin Cardiol. 2025 Sep;48(9):e70210. doi: 10.1002/clc.70210.

Abstract

BACKGROUND

Preeclampsia (PE), a leading cause of maternal morbidity, lacks reliable early biomarkers. This study evaluates acoustic cardiography (ACG) for noninvasive left ventricular ejection time (LVET) monitoring and its predictive value in PE.

METHODS

In an observational case-control study, 59 pregnant women (28 controls, 31 PE cases) underwent synchronized ECG-phonocardiogram (PCG) monitoring using AI-driven devices. LVET, Q2S2Max, and hemodynamic parameters were analyzed.

HYPOTHESIS

ACG predict PE risk via LVET monitoring.

RESULTS

Significantly prolonged LVET in the PE group (320.28 ± 26.79 ms vs. 301.32 ± 35.42 ms, p = 0.026), correlating with increased cardiac afterload. ROC analysis revealed moderate diagnostic efficacy for LVET alone (AUC = 0.658, sensitivity 72.4%, specificity 57.1%). Combining LVET with hypertension history enhanced performance (AUC = 0.776, specificity 77.8%), reducing false positives. Elevated Q2S2Max in PE (426.10 ± 29.46 vs. 403.96 ± 33.28, p = 0.010) indicated vascular stiffness, suggesting early vascular-cardiac coupling dysfunction.

CONCLUSIONS

ACG-derived parameters, integrated with clinical risk factors, demonstrated cost-effective, dynamic monitoring potential for early PE detection, particularly in resource-limited settings. While limited by sample size and single-center design, this study highlights ACG as a promising tool for cardiovascular risk stratification in pregnancy, warranting further validation in larger cohorts.

摘要

背景

子痫前期(PE)是孕产妇发病的主要原因,缺乏可靠的早期生物标志物。本研究评估了声学心动图(ACG)用于无创左心室射血时间(LVET)监测及其在PE中的预测价值。

方法

在一项观察性病例对照研究中,59名孕妇(28名对照,31例PE病例)使用人工智能驱动的设备进行同步心电图-心音图(PCG)监测。分析了LVET、Q2S2Max和血流动力学参数。

假设

ACG通过LVET监测预测PE风险。

结果

PE组LVET显著延长(320.28±26.79毫秒对301.32±35.42毫秒,p = 0.026),与心脏后负荷增加相关。ROC分析显示单独LVET具有中等诊断效能(AUC = 0.658,敏感性72.4%,特异性57.1%)。将LVET与高血压病史相结合可提高性能(AUC = 0.776,特异性77.8%),减少假阳性。PE组Q2S2Max升高(426.10±29.46对403.96±33.28,p = 0.010)表明血管僵硬,提示早期血管-心脏耦合功能障碍。

结论

ACG衍生参数与临床危险因素相结合,显示出具有成本效益的动态监测潜力,可用于早期PE检测,特别是在资源有限的环境中。虽然受样本量和单中心设计的限制,但本研究强调ACG是孕期心血管风险分层的有前途的工具,值得在更大队列中进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92c1/12434185/7eb8b1286035/CLC-48-e70210-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验