Suppr超能文献

利用风力涡轮机叶片固体废弃物制备高性能复合纤维的多层制造法

Multilayered Fabrication Containing Wind Turbine Blade Solid Wastes for High-Performance Composite Fibers.

作者信息

Thippanna Varunkumar, Ramanathan Arunachalam, Patil Dhanush, Sobczak M Taylor, Theobald Taylor G, Thummalapalli Sri Vaishnavi, Sun Xiao, Yu Churan, Doran Ian, Sui Chao, Were Joshua, Wang Xianqiao, Yang Sui, Xu Xin, Mada Kannan Arunachala Nadar, Asadi Amir, Nafady Ayman, Al-Enizi Abdullah M, Hassan Mohammad K, Song Kenan

机构信息

Mechanical Engineering, College of Engineering, University of Georgia, 302 E Campus Rd, Athens, Georgia 30602, United States.

Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States.

出版信息

ACS Mater Au. 2025 Jul 17;5(5):809-822. doi: 10.1021/acsmaterialsau.5c00041. eCollection 2025 Sep 10.

Abstract

The disposal of wind turbine blade (WTB) waste poses a significant environmental challenge due to its high volume and complex composition. This study introduces an innovative approach to address this issue by repurposing WTB-derived glass fibers (GF) into high-performance polyacrylonitrile (PAN)-GF composite fibers through a scalable dry-jet wet spinning and forced assembly process. By integrating alternating layers of PAN and PAN-GF, layer thickness was precisely controlled to the micrometer scale, ensuring enhanced GF dispersion and improved orientation through shear stress at layer interfaces. The individual layer thickness in the multilayered PAN-GF fibers decreased progressively with an increasing number of layers, with 32-layered fibers exhibiting comparatively thicker layers, while 256-layered fibers demonstrated significantly thinner layers. The effects of WTB-GF incorporation on the thermal and mechanical properties of PAN fibers were examined using tensile testing and thermogravimetric analysis (TGA). Using GF loadings of 1-4 wt %, the 256-layered composite fibers demonstrated remarkable mechanical improvements, with stiffness (modulus) increasing by 54.7% from 15.10 to 23.37 GPa and tensile strength rising by 27.2% from 521.71 to 663.66 MPa compared to pure PAN fibers. TGA results indicate that increasing the GF content leads to higher residual weight at 900 °C, reflecting enhanced thermal stability and greater char yield. The 256-layered 10PAN-4GF fibers showed the highest residual mass (41.23 wt %), highlighting the significant contribution of GF reinforcement to thermal stabilization. Heat treatment further transformed these precursor fibers into carbonized fibers (CF) with exceptional thermal stability and performance under extreme conditions. This process highlights a sustainable pathway for reusing WTB waste and producing advanced composite fibers, making them ideal candidates for demanding applications such as aerospace and space exploration.

摘要

风力涡轮机叶片(WTB)废料的处理因其体积庞大且成分复杂而带来了重大的环境挑战。本研究引入了一种创新方法来解决这一问题,即将WTB衍生的玻璃纤维(GF)通过可扩展的干喷湿纺和强制组装工艺重新利用,制成高性能聚丙烯腈(PAN)-GF复合纤维。通过整合PAN和PAN-GF的交替层,层厚度被精确控制到微米尺度,通过层界面处的剪切应力确保了GF的更好分散和改进的取向。多层PAN-GF纤维中的单个层厚度随着层数的增加而逐渐减小,32层纤维的层相对较厚,而256层纤维的层则明显更薄。使用拉伸测试和热重分析(TGA)研究了WTB-GF掺入对PAN纤维热性能和力学性能的影响。使用1-4 wt%的GF负载量,与纯PAN纤维相比,256层复合纤维表现出显著的力学性能改善,刚度(模量)从15.10 GPa增加到23.37 GPa,增幅为54.7%,拉伸强度从521.71 MPa增加到663.66 MPa,增幅为27.2%。TGA结果表明,增加GF含量会导致900°C时的残余重量更高,这反映了热稳定性的提高和更高的焦炭产率。256层的10PAN-4GF纤维显示出最高的残余质量(41.23 wt%),突出了GF增强对热稳定的显著贡献。热处理进一步将这些前驱体纤维转化为具有卓越热稳定性和在极端条件下性能的碳化纤维(CF)。这一过程突出了一条可持续的途径,用于再利用WTB废料并生产先进的复合纤维,使其成为航空航天和太空探索等苛刻应用的理想候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04af/12426776/ea831b0ab342/mg5c00041_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验